BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 28773520)

  • 21. On the Use of Machine Learning Models for Prediction of Compressive Strength of Concrete: Influence of Dimensionality Reduction on the Model Performance.
    Wan Z; Xu Y; Šavija B
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33546376
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of the ANN Hyperparameters on the Forecast Accuracy of RAC's Compressive Strength.
    Almeida TADC; Felix EF; de Sousa CMA; Pedroso GOM; Motta MFB; Prado LP
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analyzing the Compressive Strength of Ceramic Waste-Based Concrete Using Experiment and Artificial Neural Network (ANN) Approach.
    Song H; Ahmad A; Ostrowski KA; Dudek M
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443041
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling the compressive strength of eco-friendly self-compacting concrete incorporating ground granulated blast furnace slag using soft computing techniques.
    Faraj RH; Mohammed AA; Omer KM
    Environ Sci Pollut Res Int; 2022 Oct; 29(47):71338-71357. PubMed ID: 35596861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative Study of Supervised Machine Learning Algorithms for Predicting the Compressive Strength of Concrete at High Temperature.
    Ahmad A; Ostrowski KA; Maślak M; Farooq F; Mehmood I; Nafees A
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361416
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Environmental assessment and mechanical properties of Polypropylene fibres reinforced ternary binder foamed concrete.
    Jhatial AA; Goh WI; Mastoi AK; Traore AF; Oad M
    Environ Sci Pollut Res Int; 2022 Jan; 29(2):2985-3007. PubMed ID: 34383212
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms.
    Ahmad A; Ahmad W; Chaiyasarn K; Ostrowski KA; Aslam F; Zajdel P; Joyklad P
    Polymers (Basel); 2021 Oct; 13(19):. PubMed ID: 34641204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction Model for Mechanical Properties of Lightweight Aggregate Concrete Using Artificial Neural Network.
    Yoon JY; Kim H; Lee YJ; Sim SH
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31443400
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Performance Comparison of Machine Learning Models for Concrete Compressive Strength Prediction.
    Sah AK; Hong YM
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730881
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Comparative Study for the Prediction of the Compressive Strength of Self-Compacting Concrete Modified with Fly Ash.
    Farooq F; Czarnecki S; Niewiadomski P; Aslam F; Alabduljabbar H; Ostrowski KA; Śliwa-Wieczorek K; Nowobilski T; Malazdrewicz S
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501024
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction model for the compressive strength of green concrete using cement kiln dust and fly ash.
    Bakhoum ES; Amir A; Osama F; Adel M
    Sci Rep; 2023 Feb; 13(1):1864. PubMed ID: 36726037
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of the Compressive Strength of Waste-Based Concretes Using Artificial Neural Network.
    Amar M; Benzerzour M; Zentar R; Abriak NE
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295113
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation and Optimization of the C-ANN Structure in Predicting the Compressive Strength of Foamed Concrete.
    Dao DV; Ly HB; Vu HT; Le TT; Pham BT
    Materials (Basel); 2020 Feb; 13(5):. PubMed ID: 32121104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Concrete compressive strength prediction modeling utilizing deep learning long short-term memory algorithm for a sustainable environment.
    Latif SD
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):30294-30302. PubMed ID: 33590396
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental study and theoretical prediction of mechanical properties of ultra-high-performance concrete incorporated with nanorice husk ash burning at different temperature treatments.
    Mostafa SA; Ahmed N; Almeshal I; Tayeh BA; Elgamal MS
    Environ Sci Pollut Res Int; 2022 Oct; 29(50):75380-75401. PubMed ID: 35655017
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational AI Models for Investigating the Radiation Shielding Potential of High-Density Concrete.
    Amin MN; Ahmad I; Iqbal M; Abbas A; Khan K; Faraz MI; Alabdullah AA; Ullah S
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806698
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting the strengths of date fiber reinforced concrete subjected to elevated temperature using artificial neural network, and Weibull distribution.
    Adamu M; Rehman KU; Ibrahim YE; Shatanawi W
    Sci Rep; 2023 Oct; 13(1):18649. PubMed ID: 37903786
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predictive Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Artificial Intelligence Approaches: MLPNN, ANFIS, and GEP.
    Nafees A; Javed MF; Khan S; Nazir K; Farooq F; Aslam F; Musarat MA; Vatin NI
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proposing several model techniques including ANN and M5P-tree to predict the compressive strength of geopolymer concretes incorporated with nano-silica.
    Ahmed HU; Mohammed AS; Mohammed AA
    Environ Sci Pollut Res Int; 2022 Oct; 29(47):71232-71256. PubMed ID: 35595907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling of Compressive Strength of Self-Compacting Rubberized Concrete Using Machine Learning.
    Kovačević M; Lozančić S; Nyarko EK; Hadzima-Nyarko M
    Materials (Basel); 2021 Aug; 14(15):. PubMed ID: 34361540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.