These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 28773605)

  • 1. A Review on Electroactive Polymers for Waste Heat Recovery.
    Kolasińska E; Kolasiński P
    Materials (Basel); 2016 Jun; 9(6):. PubMed ID: 28773605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress in oxide thermoelectric materials: p-type Ca3Co4O9 and n-type SrTiO3(-).
    Ohta H; Sugiura K; Koumoto K
    Inorg Chem; 2008 Oct; 47(19):8429-36. PubMed ID: 18821809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently.
    Zhang Q; Sun Y; Xu W; Zhu D
    Adv Mater; 2014 Oct; 26(40):6829-51. PubMed ID: 24687930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review on the fabrication of polymer-based thermoelectric materials and fabrication methods.
    Kamarudin MA; Sahamir SR; Datta RS; Long BD; Mohd Sabri MF; Mohd Said S
    ScientificWorldJournal; 2013 Nov; 2013():713640. PubMed ID: 24324378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermoelectric Bi
    Meroz O; Gelbstein Y
    Phys Chem Chem Phys; 2018 Feb; 20(6):4092-4099. PubMed ID: 29354831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boundary Engineering for the Thermoelectric Performance of Bulk Alloys Based on Bismuth Telluride.
    Mun H; Choi SM; Lee KH; Kim SW
    ChemSusChem; 2015 Jul; 8(14):2312-26. PubMed ID: 25782971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Development of Thermoelectric Polymers and Composites.
    Yao H; Fan Z; Cheng H; Guan X; Wang C; Sun K; Ouyang J
    Macromol Rapid Commun; 2018 Mar; 39(6):e1700727. PubMed ID: 29356234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An overview of commercialization and marketization of thermoelectric generators for low-temperature waste heat recovery.
    Lee KT; Lee DS; Chen WH; Lin YL; Luo D; Park YK; Bandala A
    iScience; 2023 Oct; 26(10):107874. PubMed ID: 37860755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Band engineering of thermoelectric materials.
    Pei Y; Wang H; Snyder GJ
    Adv Mater; 2012 Dec; 24(46):6125-35. PubMed ID: 23074043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermoelectric Polymers and their Elastic Aerogels.
    Khan ZU; Edberg J; Hamedi MM; Gabrielsson R; Granberg H; Wågberg L; Engquist I; Berggren M; Crispin X
    Adv Mater; 2016 Jun; 28(22):4556-62. PubMed ID: 26836440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advancing Thermoelectric Materials: A Comprehensive Review Exploring the Significance of One-Dimensional Nano Structuring.
    Al-Fartoos MMR; Roy A; Mallick TK; Tahir AA
    Nanomaterials (Basel); 2023 Jul; 13(13):. PubMed ID: 37446526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding Oxidation Resistance of Half-Heusler Alloys for in-Air High Temperature Sustainable Thermoelectric Generators.
    Kang HB; Saparamadu U; Nozariasbmarz A; Li W; Zhu H; Poudel B; Priya S
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36706-36714. PubMed ID: 32672927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Performance Thermoelectric Generators for Field Deployments.
    Kishore RA; Nozariasbmarz A; Poudel B; Priya S
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10389-10401. PubMed ID: 32040298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials.
    Fu C; Bai S; Liu Y; Tang Y; Chen L; Zhao X; Zhu T
    Nat Commun; 2015 Sep; 6():8144. PubMed ID: 26330371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent trends and future perspectives of thermoelectric materials and their applications.
    Baskaran P; Rajasekar M
    RSC Adv; 2024 Jul; 14(30):21706-21744. PubMed ID: 38979465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing the Thermoelectric Performance of Polycrystalline SnSe by Decoupling Electrical and Thermal Transport through Carbon Fiber Incorporation.
    Yang G; Sang L; Li M; Kazi Nazrul Islam SM; Yue Z; Liu L; Li J; Mitchell DRG; Ye N; Wang X
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12910-12918. PubMed ID: 32101408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microturbine and Thermoelectric Generator Combined System: A Case Study.
    Miozzo A; Boldrini S; Ferrario A; Fabrizio M
    J Nanosci Nanotechnol; 2017 Mar; 17(3):1601-607. PubMed ID: 29693978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoupling interrelated parameters for designing high performance thermoelectric materials.
    Xiao C; Li Z; Li K; Huang P; Xie Y
    Acc Chem Res; 2014 Apr; 47(4):1287-95. PubMed ID: 24517646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoelectric Silver-Based Chalcogenides.
    Tee SY; Ponsford D; Lay CL; Wang X; Wang X; Neo DCJ; Wu T; Thitsartarn W; Yeo JCC; Guan G; Lee TC; Han MY
    Adv Sci (Weinh); 2022 Dec; 9(36):e2204624. PubMed ID: 36285805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer-Inorganic Thermoelectric Nanomaterials: Electrical Properties, Interfacial Chemistry Engineering, and Devices.
    Zhang X; Pan S; Song H; Guo W; Zhao S; Chen G; Zhang Q; Jin H; Zhang L; Chen Y; Wang S
    Front Chem; 2021; 9():677821. PubMed ID: 33981678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.