These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 28773617)

  • 1. The Manufacturing of High Porosity Iron with an Ultra-Fine Microstructure via Free Pressureless Spark Plasma Sintering.
    Cui G; Wei X; Olevsky EA; German RM; Chen J
    Materials (Basel); 2016 Jun; 9(6):. PubMed ID: 28773617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of Porous Materials by Spark Plasma Sintering: A Review.
    Dudina DV; Bokhonov BB; Olevsky EA
    Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30759751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and Properties of Titanium Obtained by Spark Plasma Sintering of a Ti Powder⁻Fiber Mixture.
    Shi M; Liu S; Wang Q; Yang X; Zhang G
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30544733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of Aluminum Particles with Shell Morphology during Pressureless Spark Plasma Sintering of Fe-Al Mixtures: Current-Related or Kirkendall Effect?
    Dudina DV; Bokhonov BB; Mukherjee AK
    Materials (Basel); 2016 May; 9(5):. PubMed ID: 28773498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of ZrO
    Ghayebloo M; Alizadeh P; Melo RM
    J Mech Behav Biomed Mater; 2020 May; 105():103709. PubMed ID: 32279851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-Porosity (Ta
    Yang Q; Li C; Ouyang H; Gao R; Shen T; Huang J
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards refining microstructures of biodegradable magnesium alloy WE43 by spark plasma sintering.
    Soderlind J; Cihova M; Schäublin R; Risbud S; Löffler JF
    Acta Biomater; 2019 Oct; 98():67-80. PubMed ID: 31254685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Fe addition on properties of Ti-6Al-xFe manufactured by blended elemental process.
    Sjafrizal T; Dehghan-Manshadi A; Kent D; Yan M; Dargusch MS
    J Mech Behav Biomed Mater; 2020 Feb; 102():103518. PubMed ID: 31877522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manufacturing hydroxyapatite scaffold from snapper scales with green phenolic granules as the space holder material.
    Indra A; Hamid I; Farenza J; Handra N; Anrinal ; Subardi A
    J Mech Behav Biomed Mater; 2022 Dec; 136():105509. PubMed ID: 36240527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spark Plasma Sintering Behavior of Nb-Mo-Si Alloy Powders Fabricated by Hydrogenation-Dehydrogenation Method.
    Lee SY; Park KB; Kang JW; Kim Y; Kang HS; Ha TK; Min SH; Park HK
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31671875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinforcing 13-93 bioglass scaffolds fabricated by robocasting and pressureless spark plasma sintering with graphene oxide.
    Motealleh A; Eqtesadi S; Perera FH; Ortiz AL; Miranda P; Pajares A; Wendelbo R
    J Mech Behav Biomed Mater; 2019 Sep; 97():108-116. PubMed ID: 31103928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Ultra-High Pressure Sintering and Spark Plasma Sintering and Subsequent Heat Treatment on the Properties of Si
    Lv X; Li X; Huang J; Ge C; Yu Q
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flash (Ultra-Rapid) Spark-Plasma Sintering of Silicon Carbide.
    Olevsky EA; Rolfing SM; Maximenko AL
    Sci Rep; 2016 Sep; 6():33408. PubMed ID: 27624641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NiTi-Nb micro-trusses fabricated via extrusion-based 3D-printing of powders and transient-liquid-phase sintering.
    Taylor SL; Ibeh AJ; Jakus AE; Shah RN; Dunand DC
    Acta Biomater; 2018 Aug; 76():359-370. PubMed ID: 29890266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and Characteristics of High-Performance, Low-Density Metallo-Ceramics Composite.
    Abramovskis V; Drunka R; Csáki Š; Lukáč F; Veverka J; Illkova K; Gavrilovs P; Shishkin A
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of Lightweight Ceramic Matrix-Less Syntactic Foam Composed of Cenosphere Using Spark Plasma Sintering.
    Eiduks TV; Drunka R; Abramovskis V; Zalite I; Gavrilovs P; Baronins J; Lapkovskis V
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38255618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Influence of Milling and Spark Plasma Sintering on the Microstructure and Properties of the Al7075 Alloy.
    Molnárová O; Málek P; Veselý J; Minárik P; Lukáč F; Chráska T; Novák P; Průša F
    Materials (Basel); 2018 Apr; 11(4):. PubMed ID: 29614046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructure and Sintering Behaviors of Al-Cr-
    Kim YH; Yoo HS; Son HT
    J Nanosci Nanotechnol; 2021 Sep; 21(9):4768-4772. PubMed ID: 33691864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-Situ Synthesis, Microstructure, and Mechanical Properties of TiB
    Liu J; Wu M; Chen J; Ye Z; Lin C; Chen W; Du C
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33946487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binder Jetting Additive Manufacturing of High Porosity 316L Stainless Steel Metal Foams.
    Meenashisundaram GK; Xu Z; Nai MLS; Lu S; Ten JS; Wei J
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32847089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.