These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 28773623)

  • 1. Functionalization of Cellulose Nanocrystals in Choline Lactate Ionic Liquid.
    Montes S; Azcune I; Cabañero G; Grande HJ; Odriozola I; Labidi J
    Materials (Basel); 2016 Jun; 9(7):. PubMed ID: 28773623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong Surface Treatment Effects on Reinforcement Efficiency in Biocomposites Based on Cellulose Nanocrystals in Poly(vinyl acetate) Matrix.
    Ansari F; Salajková M; Zhou Q; Berglund LA
    Biomacromolecules; 2015 Dec; 16(12):3916-24. PubMed ID: 26505077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface modification of the cellulose nanocrystals through vinyl silane grafting.
    Dhali K; Daver F; Cass P; Adhikari B
    Int J Biol Macromol; 2022 Mar; 200():397-408. PubMed ID: 35041891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing into the nucleation and reinforcing effects of poly (vinyl acetate) grafted cellulose nanocrystals in melt-processed poly (lactic acid) nanocomposites.
    Wu H; Liu Y; Wu H; Yuan Y; Zhang J
    Int J Biol Macromol; 2023 Mar; 231():123421. PubMed ID: 36731697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface functionalization of cellulose nanocrystals with polymeric ionic liquids during phase transfer.
    Huang S; Wang X; Shen J; Wu R; Zhao H; Wang Y; Wang Y; Xia Y
    Carbohydr Polym; 2017 Feb; 157():1426-1433. PubMed ID: 27987852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic Liquids Grafted Cellulose Nanocrystals for High-Strength and Toughness PVA Nanocomposite.
    Wang L; Hu J; Liu Y; Shu J; Wu H; Wang Z; Pan X; Zhang N; Zhou L; Zhang J
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38796-38804. PubMed ID: 32805936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocomposites from Natural Rubber: Synergistic Effects of Functionalized Cellulose Nanocrystals as Both Reinforcing and Cross-Linking Agents via Free-Radical Thiol-ene Chemistry.
    Parambath Kanoth B; Claudino M; Johansson M; Berglund LA; Zhou Q
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16303-10. PubMed ID: 26151647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functionalization of cellulose nanocrystals extracted from pineapple leaves as a UV-absorbing agent in poly(lactic acid).
    Pornbencha K; Sringam S; Piyanirund S; Seubsai A; Prapainainar P; Niumnuy C; Roddecha S; Dittanet P
    RSC Adv; 2023 May; 13(22):15311-15321. PubMed ID: 37213346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulose nanocrystals: synthesis, functional properties, and applications.
    George J; Sabapathi SN
    Nanotechnol Sci Appl; 2015; 8():45-54. PubMed ID: 26604715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants.
    Kan KH; Li J; Wijesekera K; Cranston ED
    Biomacromolecules; 2013 Sep; 14(9):3130-9. PubMed ID: 23865631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined effect of cellulose nanocrystal and reduced graphene oxide into poly-lactic acid matrix nanocomposite as a scaffold and its anti-bacterial activity.
    Pal N; Dubey P; Gopinath P; Pal K
    Int J Biol Macromol; 2017 Feb; 95():94-105. PubMed ID: 27856322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Well-dispersed cellulose nanocrystals in hydrophobic polymers by in situ polymerization for synthesizing highly reinforced bio-nanocomposites.
    Geng S; Wei J; Aitomäki Y; Noël M; Oksman K
    Nanoscale; 2018 Jul; 10(25):11797-11807. PubMed ID: 29675528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The preparation and characterization of nanocomposite film reinforced by modified cellulose nanocrystals.
    Chen QJ; Zhou LL; Zou JQ; Gao X
    Int J Biol Macromol; 2019 Jul; 132():1155-1162. PubMed ID: 30981769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Alkylation of Cellulose Nanocrystals to Enhance Their Compatibility with Polylactide.
    Lee JH; Park SH; Kim SH
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced graphene oxide and PEG-grafted TEMPO-oxidized cellulose nanocrystal reinforced poly-lactic acid nanocomposite film for biomedical application.
    Pal N; Banerjee S; Roy P; Pal K
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109956. PubMed ID: 31499971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites.
    George J; Ramana KV; Bawa AS; Siddaramaiah
    Int J Biol Macromol; 2011 Jan; 48(1):50-7. PubMed ID: 20920524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of poly(ethylene glycol) grafted cellulose nanocrystals in poly(lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering.
    Zhang C; Salick MR; Cordie TM; Ellingham T; Dan Y; Turng LS
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():463-471. PubMed ID: 25686973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Nanoparticle Pretreatment on the Thermal, Rheological and Mechanical Properties of PLA-PBSA Nanocomposites Incorporating Cellulose Nanocrystals or Montmorillonite.
    Abdallah W; Mirzadeh A; Tan V; Kamal MR
    Nanomaterials (Basel); 2018 Dec; 9(1):. PubMed ID: 30587837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-Catalysis for the Functionalization of Cellulose Nanocrystals.
    Peponi L; Barrera-Rivera KA; Kenny JM; Marcos-Fernandez Á; Martinez-Richa A; López D
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneously Tailoring Surface Energies and Thermal Stabilities of Cellulose Nanocrystals Using Ion Exchange: Effects on Polymer Composite Properties for Transportation, Infrastructure, and Renewable Energy Applications.
    Fox DM; Rodriguez RS; Devilbiss MN; Woodcock J; Davis CS; Sinko R; Keten S; Gilman JW
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):27270-27281. PubMed ID: 27626824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.