These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 28773633)
1. Tunable Emission Wavelength Stacked InAs/GaAs Quantum Dots by Chemical Beam Epitaxy for Optical Coherence Tomography. Ilahi B; Zribi J; Guillotte M; Arès R; Aimez V; Morris D Materials (Basel); 2016 Jun; 9(7):. PubMed ID: 28773633 [TBL] [Abstract][Full Text] [Related]
2. Optical characterization of In-flushed InAs/GaAs quantum dots emitting a broadband spectrum with multiple peaks at ~1 μm. Kitamura S; Senshu M; Katsuyama T; Hino Y; Ozaki N; Ohkouchi S; Sugimoto Y; Hogg RA Nanoscale Res Lett; 2015; 10():231. PubMed ID: 26034422 [TBL] [Abstract][Full Text] [Related]
3. Enhancing optical characteristics of InAs/InGaAsSb quantum dot structures with long-excited state emission at 1.31 μm. Liu WS; Tseng HL; Kuo PC Opt Express; 2014 Aug; 22(16):18860-9. PubMed ID: 25320972 [TBL] [Abstract][Full Text] [Related]
4. Reduced Dislocation of GaAs Layer Grown on Ge-Buffered Si (001) Substrate Using Dislocation Filter Layers for an O-Band InAs/GaAs Quantum Dot Narrow-Ridge Laser. Du Y; Wei W; Xu B; Wang G; Li B; Miao Y; Zhao X; Kong Z; Lin H; Yu J; Su J; Dong Y; Wang W; Ye T; Zhang J; Radamson HH Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295932 [TBL] [Abstract][Full Text] [Related]
5. InAs/GaAs quantum-dot superluminescent diodes monolithically grown on a Ge substrate. Jiang Q; Tang M; Chen S; Wu J; Seeds A; Liu H Opt Express; 2014 Sep; 22(19):23242-8. PubMed ID: 25321793 [TBL] [Abstract][Full Text] [Related]
6. O-Band Emitting InAs Quantum Dots Grown By MOCVD On A 300 mm Ge-Buffered Si (001) Substrate. Abouzaid O; Mehdi H; Martin M; Moeyaert J; Salem B; David S; Souifi A; Chauvin N; Hartmann JM; Ilahi B; Morris D; Ahaitouf A; Ahaitouf A; Baron T Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33297597 [TBL] [Abstract][Full Text] [Related]
7. Influence of GaAsBi Matrix on Optical and Structural Properties of InAs Quantum Dots. Wang P; Pan W; Wu X; Liu J; Cao C; Wang S; Gong Q Nanoscale Res Lett; 2016 Dec; 11(1):280. PubMed ID: 27255900 [TBL] [Abstract][Full Text] [Related]
8. Molecular beam epitaxy growth methods of wavelength control for InAs/(In)GaAsN/GaAs heterostructures. Mamutin VV; Egorov AY; Kryzhanovskaya NV Nanotechnology; 2008 Nov; 19(44):445715. PubMed ID: 21832756 [TBL] [Abstract][Full Text] [Related]
9. Electrically pumped continuous-wave O-band quantum-dot superluminescent diode on silicon. Lu Y; Cao V; Liao M; Li W; Tang M; Li A; Smowton P; Seeds A; Liu H; Chen S Opt Lett; 2020 Oct; 45(19):5468-5471. PubMed ID: 33001927 [TBL] [Abstract][Full Text] [Related]
10. Ground state lasing at 1.30 microm from InAs/GaAs quantum dot lasers grown by metal-organic chemical vapor deposition. Guimard D; Ishida M; Bordel D; Li L; Nishioka M; Tanaka Y; Ekawa M; Sudo H; Yamamoto T; Kondo H; Sugawara M; Arakawa Y Nanotechnology; 2010 Mar; 21(10):105604. PubMed ID: 20160334 [TBL] [Abstract][Full Text] [Related]
11. A high-performance quantum dot superluminescent diode with a two-section structure. Li X; Jin P; An Q; Wang Z; Lv X; Wei H; Wu J; Wu J; Wang Z Nanoscale Res Lett; 2011 Dec; 6(1):625. PubMed ID: 22152015 [TBL] [Abstract][Full Text] [Related]
12. InAs/GaAs quantum-dot lasers grown on on-axis Si (001) without dislocation filter layers. Wang Y; Ma B; Li J; Liu Z; Jiang C; Li C; Liu H; Zhang Y; Zhang Y; Wang Q; Xie X; Qiu X; Ren X; Wei X Opt Express; 2023 Jan; 31(3):4862-4872. PubMed ID: 36785443 [TBL] [Abstract][Full Text] [Related]
14. Development of a 1550-nm InAs/GaAs Quantum Dot Saturable Absorber Mirror with a Short-Period Superlattice Capping Structure Towards Femtosecond Fiber Laser Applications. Jiang C; Ning J; Li X; Wang X; Zhang Z Nanoscale Res Lett; 2019 Dec; 14(1):362. PubMed ID: 31792621 [TBL] [Abstract][Full Text] [Related]
15. Enhanced Photoluminescence of 1.3 μm InAs Quantum Dots Grown on Ultrathin GaAs Buffer/Si Templates by Suppressing Interfacial Defect Emission. Kim Y; Chu RJ; Ryu G; Woo S; Lung QND; Ahn DH; Han JH; Choi WJ; Jung D ACS Appl Mater Interfaces; 2022 Oct; 14(39):45051-45058. PubMed ID: 36162121 [TBL] [Abstract][Full Text] [Related]
16. Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers. Su XB; Ding Y; Ma B; Zhang KL; Chen ZS; Li JL; Cui XR; Xu YQ; Ni HQ; Niu ZC Nanoscale Res Lett; 2018 Feb; 13(1):59. PubMed ID: 29468483 [TBL] [Abstract][Full Text] [Related]
17. Long-wavelength room-temperature luminescence from InAs/GaAs quantum dots with an optimized GaAsSbN capping layer. Utrilla AD; Ulloa JM; Guzman A; Hierro A Nanoscale Res Lett; 2014 Jan; 9(1):36. PubMed ID: 24438542 [TBL] [Abstract][Full Text] [Related]
18. InAs/GaInAs(N) quantum dots on GaAs substrate for single photon emitters above 1300 nm. Strauss M; Höfling S; Forchel A Nanotechnology; 2009 Dec; 20(50):505601. PubMed ID: 19907066 [TBL] [Abstract][Full Text] [Related]
19. Investigation of the InAs/GaAs Quantum Dots' Size: Dependence on the Strain Reducing Layer's Position. Souaf M; Baira M; Nasr O; Alouane MHH; Maaref H; Sfaxi L; Ilahi B Materials (Basel); 2015 Jul; 8(8):4699-4709. PubMed ID: 28793465 [TBL] [Abstract][Full Text] [Related]
20. Effect of InAlGaAs and GaAs combination barrier thickness on the duration of dot formation in different layers of stacked InAs/GaAs quantum dot heterostructure grown by MBE. Halder N; Suseendran J; Chakrabarti S; Herrera M; Bonds M; Browning ND J Nanosci Nanotechnol; 2010 Aug; 10(8):5202-6. PubMed ID: 21125871 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]