BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28773658)

  • 1. Modeling the Effects of Cu Content and Deformation Variables on the High-Temperature Flow Behavior of Dilute Al-Fe-Si Alloys Using an Artificial Neural Network.
    Shakiba M; Parson N; Chen XG
    Materials (Basel); 2016 Jun; 9(7):. PubMed ID: 28773658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of True Stress at Hot Deformation of High Manganese Steel by Artificial Neural Network Modeling.
    Churyumov AY; Kazakova AA
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Modified Back Propagation Artificial Neural Network Model Based on Genetic Algorithm to Predict the Flow Behavior of 5754 Aluminum Alloy.
    Huang C; Jia X; Zhang Z
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29883394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Flow Stress of Annealed 7075 Al Alloy in Hot Deformation Using Strain-Compensated Arrhenius and Neural Network Models.
    Yang H; Bu H; Li M; Lu X
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hot Deformation Behavior and Microstructure Evolution of Cu-Ni-Co-Si Alloys.
    Liu F; Ma J; Peng L; Huang G; Zhang W; Xie H; Mi X
    Materials (Basel); 2020 Apr; 13(9):. PubMed ID: 32349437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid Artificial Neural Network-Based Models to Investigate Deformation Behavior of AZ31B Magnesium Alloy at Warm Tensile Deformation.
    Murugesan M; Yu JH; Chung W; Lee CW
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Constitutive Models and Machine Learning Models to Predict the Elevated Temperature Flow Behavior of TiAl Alloy.
    Zhao R; He J; Tian H; Jing Y; Xiong J
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructural Evolution and Dynamic Softening Mechanisms of Al-Zn-Mg-Cu Alloy during Hot Compressive Deformation.
    Shi C; Lai J; Chen XG
    Materials (Basel); 2014 Jan; 7(1):244-264. PubMed ID: 28788454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of deformation behavior and strain-induced precipitations in Al-Zn-Mg-Cu alloys across a wide temperature range.
    Zhang Q; Zuo J; Yang C; Xia Y; Shu X; Mei B; Wang Y; Cui L
    Sci Rep; 2024 Jun; 14(1):14722. PubMed ID: 38926495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise Modeling of Thermal and Strain Rate Effect on the Hardening Behavior of SiC/Al Composite.
    Wang Y; Wu P; He X; Zhao W; Lan X; Lou Y
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow Stress Prediction and Hot Deformation Mechanisms in Ti-44Al-5Nb-(Mo, V, B) Alloy.
    Li T; Liu G; Xu M; Wang B; Fu T; Wang Z; Misra RDK
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30347775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hot Deformation Behavior Considering Strain Effects and Recrystallization Mechanism of an Al-Zn-Mg-Cu Alloy.
    Luo L; Liu Z; Bai S; Zhao J; Zeng D; Wang J; Cao J; Hu Y
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32283587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards an Optimized Artificial Neural Network for Predicting Flow Stress of In718 Alloys at High Temperatures.
    Zhang C; Shi Q; Wang Y; Qiao J; Tang T; Zhou J; Liang W; Chen G
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37048956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hot Deformation Behavior and Strain-Compensated Constitutive Equation of Nano-Sized SiC Particle-Reinforced Al-Si Matrix Composites.
    Wang Z; Wang A; Xie J; Liu P
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32290506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deformation Behavior and Precipitation Features in a Stretched Al-Cu Alloy at Intermediate Temperatures.
    Lin YC; Dong WY; Zhu XH; Wu Q; He YJ
    Materials (Basel); 2020 May; 13(11):. PubMed ID: 32486119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on Hot Deformation Behavior of Spray-Forming and Nano-Sized Al-Cu-Mg Alloy.
    Shen T; Fan C; Ou L; Hu Z; Yang J; He W; Wang B
    J Nanosci Nanotechnol; 2021 Jun; 21(6):3274-3282. PubMed ID: 34739782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hot Deformation Behavior of a New Al-Mn-Sc Alloy.
    Kang W; Yang Y; Cao S; Li L; Xin S; Wang H; Cao Z; Liang E; Zhang X; Huang A
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31861552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hot Deformation Behavior and Processing Maps of ZnSnO
    Li WJ; Chen ZY; Tang XP; Shao WZ; Zhen L
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Temperature and Strain Rate on the Fracture Behaviors of an Al-Zn-Mg-Cu Alloy.
    Guo Y; Zhou M; Sun X; Qian L; Li L; Xie Y; Liu Z; Wu D; Yang L; Wu T; Zhao D; Wang J; Zhao H
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 30021978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hot Deformation Behavior of Homogenized Mg-13.5Gd-3.2Y-2.3Zn-0.5Zr Alloy via Hot Compression Tests.
    Zhang Z; Yan Z; Du Y; Zhang G; Zhu J; Ren L; Wang Y
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30441881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.