These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 28773672)
1. Bimetallic Nanoparticles as Efficient Catalysts: Facile and Green Microwave Synthesis. Blosi M; Ortelli S; Costa AL; Dondi M; Lolli A; Andreoli S; Benito P; Albonetti S Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773672 [TBL] [Abstract][Full Text] [Related]
2. Coupling Natural Halloysite Nanotubes and Bimetallic Pt-Au Alloy Nanoparticles for Highly Efficient and Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. Zhong X; Yuan P; Wei Y; Liu D; Losic D; Li M ACS Appl Mater Interfaces; 2022 Jan; 14(3):3949-3960. PubMed ID: 35015494 [TBL] [Abstract][Full Text] [Related]
3. Au-Based Bimetallic Catalysts for Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid under Base-Free Reaction Conditions. Su J; Liu Z; Tan Y; Xiao Y; Zhan N; Ding Y Molecules; 2024 Jun; 29(12):. PubMed ID: 38930789 [TBL] [Abstract][Full Text] [Related]
4. A Facile Synthesis Route to AuPd Alloys for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. Peng Y; Qiu B; Ding S; Hu M; Zhang Y; Jiao Y; Fan X; Parlett CMA Chempluschem; 2024 Jan; 89(1):e202300545. PubMed ID: 37884457 [TBL] [Abstract][Full Text] [Related]
5. Application of silica-supported Ir and Ir-M (M = Pt, Pd, Au) catalysts for low-temperature hydrodechlorination of tetrachloromethane. Bonarowska M; Matus K; Śrębowata A; Sá J Sci Total Environ; 2018 Dec; 644():287-297. PubMed ID: 29981976 [TBL] [Abstract][Full Text] [Related]
6. Porous Nanocrystalline Silicon Supported Bimetallic Pd-Au Catalysts: Preparation, Characterization, and Direct Hydrogen Peroxide Synthesis. Potemkin DI; Maslov DK; Loponov K; Snytnikov PV; Shubin YV; Plyusnin PE; Svintsitskiy DA; Sobyanin VA; Lapkin AA Front Chem; 2018; 6():85. PubMed ID: 29637068 [TBL] [Abstract][Full Text] [Related]
7. Bimetallic Au-Pd alloy nanoparticles supported on MIL-101(Cr) as highly efficient catalysts for selective hydrogenation of 1,3-butadiene. Liu L; Zhou X; Guo L; Yan S; Li Y; Jiang S; Tai X RSC Adv; 2020 Sep; 10(55):33417-33427. PubMed ID: 35515058 [TBL] [Abstract][Full Text] [Related]
8. Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination. Nutt MO; Hughes JB; Michael SW Environ Sci Technol; 2005 Mar; 39(5):1346-53. PubMed ID: 15787376 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of Au-Pd Bimetallic Nanoflowers for Catalytic Reduction of 4-Nitrophenol. Ma T; Liang F; Chen R; Liu S; Zhang H Nanomaterials (Basel); 2017 Aug; 7(9):. PubMed ID: 28846598 [TBL] [Abstract][Full Text] [Related]
10. One pot microwave synthesis of highly stable AuPd@Pd supported core-shell nanoparticles. Howe AGR; Miedziak PJ; Morgan DJ; He Q; Strasser P; Edwards JK Faraday Discuss; 2018 Sep; 208(0):409-425. PubMed ID: 29796569 [TBL] [Abstract][Full Text] [Related]
11. Highly efficient catalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid using bimetallic Pt-Cu alloy nanoparticles as catalysts. Cheng X; Li S; Liu S; Xin Y; Yang J; Chen B; Liu H Chem Commun (Camb); 2022 Jan; 58(8):1183-1186. PubMed ID: 34981091 [TBL] [Abstract][Full Text] [Related]
12. A green approach to DDT degradation and metabolite monitoring in water comparing the hydrodechlorination efficiency of Pd, Au-on-Pd and Cu-on-Pd nanoparticle catalysis. Mendes LD; Bernardi G; Elias WC; de Oliveira DC; Domingos JB; Carasek E Sci Total Environ; 2021 Mar; 760():143403. PubMed ID: 33190896 [TBL] [Abstract][Full Text] [Related]
13. Performance of Preformed Au/Cu Nanoclusters Deposited on MgO Powders in the Catalytic Reduction of 4-Nitrophenol in Solution. Cai R; Ellis PR; Yin J; Liu J; Brown CM; Griffin R; Chang G; Yang D; Ren J; Cooke K; Bishop PT; Theis W; Palmer RE Small; 2018 Mar; 14(13):e1703734. PubMed ID: 29412512 [TBL] [Abstract][Full Text] [Related]
14. Electron Structure Tuned Oxygen Vacancy-Rich AuPd/CeO Wei Y; Pan J; Yan X; Mao Y; Zhang Y ChemSusChem; 2024 May; 17(9):e202400241. PubMed ID: 38494446 [TBL] [Abstract][Full Text] [Related]
15. H* Liu LY; Cui MH; Ambuchi JJ; Niu SM; Li XH; Wang WL; Liu H; Liu GS; Wang AJ Environ Res; 2024 Jul; 252(Pt 1):118859. PubMed ID: 38574986 [TBL] [Abstract][Full Text] [Related]
16. Green Chemistry for the Transformation of Chlorinated Wastes: Catalytic Hydrodechlorination on Pd-Ni and Pd-Fe Bimetallic Catalysts Supported on SiO Mahy JG; Delbeuck T; Tran KY; Heinrichs B; Lambert SD Gels; 2023 Mar; 9(4):. PubMed ID: 37102887 [TBL] [Abstract][Full Text] [Related]
17. Enhanced performance of glycerol electro-oxidation in alkaline media using bimetallic Au-Cu NPs supported by MWCNTs and reducible metal oxides. de Gyves J; Molina-Ruiz LG; Rutz-López E; Ocampo AL; Gutiérrez-Sánchez A; Munguía-Acevedo NM; Peña-Medina F; Esquivel-Peña V Front Chem; 2023; 11():1165303. PubMed ID: 37465358 [TBL] [Abstract][Full Text] [Related]
18. Engineering the Composition and Structure of Bimetallic Au-Cu Alloy Nanoparticles in Carbon Nanofibers: Self-Supported Electrode Materials for Electrocatalytic Water Splitting. Wang J; Zhu H; Yu D; Chen J; Chen J; Zhang M; Wang L; Du M ACS Appl Mater Interfaces; 2017 Jun; 9(23):19756-19765. PubMed ID: 28548842 [TBL] [Abstract][Full Text] [Related]
19. A tandem process for Martinez JS; Mazarío J; Gutiérrez-Tarriño S; Galdeano-Ruano C; Gaona-Miguélez J; Domine ME; Oña-Burgos P Dalton Trans; 2022 Nov; 51(46):17567-17578. PubMed ID: 36331010 [TBL] [Abstract][Full Text] [Related]
20. Au-based bimetallic catalysts: how the synergy between two metals affects their catalytic activity. Sha J; Paul S; Dumeignil F; Wojcieszak R RSC Adv; 2019 Sep; 9(51):29888-29901. PubMed ID: 35531527 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]