These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 28773761)

  • 1. Healing of Fatigue Crack in 1045 Steel by Using Eddy Current Treatment.
    Yang C; Xu W; Guo B; Shan D; Zhang J
    Materials (Basel); 2016 Jul; 9(8):. PubMed ID: 28773761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microcrack healing in non-ferrous metal tubes through eddy current pulse treatment.
    Xu W; Yang C; Yu H; Jin X; Guo B; Shan D
    Sci Rep; 2018 Apr; 8(1):6016. PubMed ID: 29662240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Healing of Fatigue Crack by High-Density Electropulsing in Austenitic Stainless Steel Treated with the Surface-Activated Pre-Coating.
    Hosoi A; Kishi T; Ju Y
    Materials (Basel); 2013 Sep; 6(9):4213-4225. PubMed ID: 28788327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crack Healing and Mechanical Properties Recovery in SA 508⁻3 Steel.
    Qiu Y; Xin R; Luo J; Ma Q
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30884904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Detection of Cracks in Steel Using Eddy Current Pulsed Thermography.
    Shi Z; Xu X; Ma J; Zhen D; Zhang H
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29614841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A High-Sensitivity Flexible Eddy Current Array Sensor for Crack Monitoring of Welded Structures under Varying Environment.
    Chen T; He Y; Du J
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29865189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on Short Fatigue Crack Behaviour of LZ50 Steel Under Non-Proportional Loading.
    Yang B; Liao Z; Xiao S; Yang G; Zhu T; Zhang X
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of closed cracks in railway using eddy current pulsed thermography.
    Yin H; Peng J; Zhang X; Tian K; Zhang Y; Guo J
    Appl Opt; 2021 Jun; 60(17):5195-5202. PubMed ID: 34143088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructural changes induced near crack tip during corrosion fatigue tests in austenitic-ferritic steel.
    Gołebiowski B; Swiatnicki WA; Gaspérini M
    J Microsc; 2010 Mar; 237(3):352-8. PubMed ID: 20500395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Electropulsing Treatment on the Fatigue Crack Growth Behavior of Copper.
    Yin Y; Chen H; Morita Y; Toku Y; Ju Y
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30400171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatigue Crack Growth Rates and Crack Tip Opening Loads in CT Specimens Made of SDSS and Manufactured Using WAAM.
    Sales A; Khanna A; Hughes J; Yin L; Kotousov A
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Selectivity imaging of the closed fatigue crack due to thermal environment using surface-acoustic-wave phased array (SAW PA).
    Ohara Y; Oshiumi T; Wu X; Uchimoto T; Takagi T; Tsuji T; Mihara T
    Ultrasonics; 2022 Feb; 119():106629. PubMed ID: 34700266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure and Fatigue Damage of 316L Stainless Steel Manufactured by Selective Laser Melting (SLM).
    Wang Z; Yang S; Huang Y; Fan C; Peng Z; Gao Z
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of Plasticity Effects on Growing Fatigue Cracks Using the CJP Model of Crack Tip Fields.
    Vasco-Olmo JM; Camacho-Reyes A; Gómez Gonzales GL; Díaz F
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Measurement of Cyclic Plastic Zone and Internal Strain Response of Q&P Steel near Fatigue Crack Tip Region Based on Micro-DIC.
    Gao H; Lin Z; Huang X; Shang H; Zhan J
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interaction of fatigue cracks with a residual stress field using thermoelastic stress analysis and synchrotron X-ray diffraction experiments.
    Amjad K; Asquith D; Patterson EA; Sebastian CM; Wang WC
    R Soc Open Sci; 2017 Nov; 4(11):171100. PubMed ID: 29291095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Rod-like Structure on Fatigue Life, Short Surface Crack Initiation and Growth Characteristics of Extruded Aluminum Alloy A2024 (Analysis via Modified Linear Elastic Fracture Mechanics).
    Masuda K; Ishihara S; Shibata H; Oguma N
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Health Monitoring of Fatigue Cracks for Steel Bridges with Wireless Large-Area Strain Sensors.
    Taher SA; Li J; Jeong JH; Laflamme S; Jo H; Bennett C; Collins WN; Downey ARJ
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical Simulation of Fatigue Cracking of Diaphragm Notch in Orthotropic Steel Deck Model.
    Zeng Y; He H; Qu Y; Sun X; Tan H; Zhou J
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue Crack Length Sizing Using a Novel Flexible Eddy Current Sensor Array.
    Xie R; Chen D; Pan M; Tian W; Wu X; Zhou W; Tang Y
    Sensors (Basel); 2015 Dec; 15(12):32138-51. PubMed ID: 26703608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.