These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 28773832)

  • 41. Nanotube foam prepared by gelatin gel as a template.
    Nabeta M; Sano M
    Langmuir; 2005 Mar; 21(5):1706-8. PubMed ID: 15723462
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preparation of a bone-like apatite foam cement.
    Walsh D; Tanaka J
    J Mater Sci Mater Med; 2001 Apr; 12(4):339-43. PubMed ID: 15348296
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preparation and compressive strength of alpha-tricalcium phosphate/gelatin gel composite cement.
    Fujishiro Y; Takahashi K; Sato T
    J Biomed Mater Res; 2001 Mar; 54(4):525-30. PubMed ID: 11426597
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Alginate/Gelatin Hydrogels Reinforced with TiO₂ and β-TCP Fabricated by Microextrusion-based Printing for Tissue Regeneration.
    Urruela-Barrios R; Ramírez-Cedillo E; Díaz de León A; Alvarez AJ; Ortega-Lara W
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960441
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Robotic deposition and in vitro characterization of 3D gelatin-bioactive glass hybrid scaffolds for biomedical applications.
    Gao C; Rahaman MN; Gao Q; Teramoto A; Abe K
    J Biomed Mater Res A; 2013 Jul; 101(7):2027-37. PubMed ID: 23255226
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fabrication of B-type carbonate apatite blocks by the phosphorization of free-molding gypsum-calcite composite.
    Zaman CT; Takeuchi A; Matsuya S; Zaman QH; Ishikawa K
    Dent Mater J; 2008 Sep; 27(5):710-5. PubMed ID: 18972788
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fabrication of low-crystallinity hydroxyapatite foam based on the setting reaction of alpha-tricalcium phosphate foam.
    Karashima S; Takeuchi A; Matsuya S; Udoh K; Koyano K; Ishikawa K
    J Biomed Mater Res A; 2009 Mar; 88(3):628-33. PubMed ID: 18314899
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gelatin porous scaffolds fabricated using a modified gas foaming technique: characterisation and cytotoxicity assessment.
    Poursamar SA; Hatami J; Lehner AN; da Silva CL; Ferreira FC; Antunes AP
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():63-70. PubMed ID: 25579897
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of gelatin source and photoinitiator type on chondrocyte redifferentiation in gelatin methacryloyl-based tissue-engineered cartilage constructs.
    Pahoff S; Meinert C; Bas O; Nguyen L; Klein TJ; Hutmacher DW
    J Mater Chem B; 2019 Mar; 7(10):1761-1772. PubMed ID: 32254918
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A convenient process to fabricate gelatin modified porous PLLA materials with high hydrophilicity and strength.
    Yin G; Zhao D; Ren Y; Zhang L; Zhou Z; Li Q
    Biomater Sci; 2016 Feb; 4(2):310-8. PubMed ID: 26568472
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of polyester fiber reinforcement on the mechanical properties of interim fixed partial dentures.
    Gopichander N; Halini Kumarai KV; Vasanthakumar M
    Saudi Dent J; 2015 Oct; 27(4):194-200. PubMed ID: 26644754
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Osteochondral Regeneration with 3D-Printed Biodegradable High-Strength Supramolecular Polymer Reinforced-Gelatin Hydrogel Scaffolds.
    Gao F; Xu Z; Liang Q; Li H; Peng L; Wu M; Zhao X; Cui X; Ruan C; Liu W
    Adv Sci (Weinh); 2019 Aug; 6(15):1900867. PubMed ID: 31406678
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.
    Maji K; Dasgupta S; Kundu B; Bissoyi A
    J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fabrication of gelatin-hyaluronic acid hybrid scaffolds with tunable porous structures for soft tissue engineering.
    Zhang F; He C; Cao L; Feng W; Wang H; Mo X; Wang J
    Int J Biol Macromol; 2011 Apr; 48(3):474-81. PubMed ID: 21255605
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fabrication and characterization of silk microfiber-reinforced methacrylated gelatin hydrogel with turnable properties.
    Xiao W; Tan Y; Li J; Gu C; Li H; Li B; Liao X
    J Biomater Sci Polym Ed; 2018 Dec; 29(17):2068-2082. PubMed ID: 29943690
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Blooming gelatin: an individual additive for enhancing nanoapatite precipitation, physical properties, and osteoblastic responses of nanostructured macroporous calcium phosphate bone cements.
    Orshesh Z; Hesaraki S; Khanlarkhani A
    Int J Nanomedicine; 2017; 12():745-758. PubMed ID: 28176961
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Alpha-Tricalcium phosphate-gelatin composite cements.
    Bigi A; Cantelli I; Panzavolta S; Rubini K
    J Appl Biomater Biomech; 2004; 2(2):81-7. PubMed ID: 20803441
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development of a bone substitute material based on alpha-tricalcium phosphate scaffold coated with carbonate apatite/poly-epsilon-caprolactone.
    Bang LT; Ramesh S; Purbolaksono J; Long BD; Chandran H; Ramesh S; Othman R
    Biomed Mater; 2015 Jul; 10(4):045011. PubMed ID: 26225725
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fabrication of hydroxycarbonate apatite coatings with hierarchically porous structures.
    Guo Y; Zhou Y; Jia D
    Acta Biomater; 2008 Mar; 4(2):334-42. PubMed ID: 17897891
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pullulan dialdehyde crosslinked gelatin hydrogels with high strength for biomedical applications.
    Zhang L; Liu J; Zheng X; Zhang A; Zhang X; Tang K
    Carbohydr Polym; 2019 Jul; 216():45-53. PubMed ID: 31047081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.