These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28773848)

  • 1. Study of Different Sol-Gel Coatings to Enhance the Lifetime of PDMS Devices: Evaluation of Their Biocompatibility.
    Aymerich M; Gómez-Varela AI; Álvarez E; Flores-Arias MT
    Materials (Basel); 2016 Aug; 9(9):. PubMed ID: 28773848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glass coating for PDMS microfluidic channels by sol-gel methods.
    Abate AR; Lee D; Do T; Holtze C; Weitz DA
    Lab Chip; 2008 Apr; 8(4):516-8. PubMed ID: 18369504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface engineering of poly(dimethylsiloxane) microfluidic devices using transition metal sol-gel chemistry.
    Roman GT; Culbertson CT
    Langmuir; 2006 Apr; 22(9):4445-51. PubMed ID: 16618201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sol-gel coating technology for the preparation of solid-phase microextraction fibers of enhanced thermal stability.
    Chong SL; Wang D; Hayes JD; Wilhite BW; Malik A
    Anal Chem; 1997 Oct; 69(19):3889-98. PubMed ID: 21639208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sol-gel immobilized cyano-polydimethylsiloxane coating for capillary microextraction of aqueous trace analytes ranging from polycyclic aromatic hydrocarbons to free fatty acids.
    Kulkarni S; Fang L; Alhooshani K; Malik A
    J Chromatogr A; 2006 Aug; 1124(1-2):205-16. PubMed ID: 16872618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-step fabrication of continuous surface relief micro-optical elements in hybrid sol-gel glass by laser direct writing.
    Yu W; Yuan X; Ngo N; Que W; Cheong W; Koudriachov V
    Opt Express; 2002 May; 10(10):443-8. PubMed ID: 19436379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-step sol-gel imprint lithography for guided-mode resonance structures.
    Huang Y; Liu L; Johnson M; C Hillier A; Lu M
    Nanotechnology; 2016 Mar; 27(9):095302. PubMed ID: 26822203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.
    Ozbolat V; Dey M; Ayan B; Ozbolat IT
    Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printing of PDMS Improves Its Mechanical and Cell Adhesion Properties.
    Ozbolat V; Dey M; Ayan B; Povilianskas A; Demirel MC; Ozbolat IT
    ACS Biomater Sci Eng; 2018 Feb; 4(2):682-693. PubMed ID: 33418756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic liquid-mediated sol-gel coatings for capillary microextraction.
    Shearrow AM; Harris GA; Fang L; Sekhar PK; Nguyen LT; Turner EB; Bhansali S; Malik A
    J Chromatogr A; 2009 Jul; 1216(29):5449-58. PubMed ID: 19515375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High pH-resistant, surface-bonded sol-gel titania hybrid organic-inorganic coating for effective on-line hyphenation of capillary microextraction (in-tube solid-phase microextraction) with high-performance liquid chromatography.
    Kim TY; Alhooshani K; Kabir A; Fries DP; Malik A
    J Chromatogr A; 2004 Aug; 1047(2):165-74. PubMed ID: 15460245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface acoustic wave characterization of optical sol-gel thin layers.
    Fall D; Compoint F; Duquennoy M; Piombini H; Ouaftouh M; Jenot F; Piwakowski B; Belleville P; Ambard C
    Ultrasonics; 2016 May; 68():102-7. PubMed ID: 26930248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stop flow lithography in perfluoropolyether (PFPE) microfluidic channels.
    Bong KW; Lee J; Doyle PS
    Lab Chip; 2014 Dec; 14(24):4680-7. PubMed ID: 25316504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser technique for the fabrication of blood vessels-like models for preclinical studies of pathologies under flow conditions.
    Aymerich M; Álvarez E; Bao-Varela C; Moscoso I; González-Juanatey JR; Flores-Arias MT
    Biofabrication; 2017 Jun; 9(2):025033. PubMed ID: 28393759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable sol-gel microstructured and microfluidic networks for protein patterning.
    Kim YD; Park CB; Clark DS
    Biotechnol Bioeng; 2001 Jun; 73(5):331-7. PubMed ID: 11320503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An improved bonded-polydimethylsiloxane solid-phase microextraction fiber obtained by a sol-gel/silica particle blend.
    Azenha M; Nogueira P; Fernando-Silva A
    Anal Chim Acta; 2008 Mar; 610(2):205-10. PubMed ID: 18291130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parameters Governing the Formation of Photopolymerized Silica Sol-Gel Monoliths in PDMS Microfluidic Chips.
    Levy MH; Goswami S; Plawsky J; Cramer SM
    Chromatographia; 2013 Aug; 76(15):993-1002. PubMed ID: 28450752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid phase microextraction fibers coated with sol-gel aminopropylsilica/polydimethylsiloxane: development and its application to screening of beer headspace.
    Biajoli AF; Augusto F
    Anal Sci; 2008 Sep; 24(9):1141-6. PubMed ID: 18781026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical and physical modifications to poly(dimethylsiloxane) surfaces affect adhesion of Caco-2 cells.
    Wang L; Sun B; Ziemer KS; Barabino GA; Carrier RL
    J Biomed Mater Res A; 2010 Jun; 93(4):1260-71. PubMed ID: 19827104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow lithography in ultraviolet-curable polydimethylsiloxane microfluidic chips.
    Kim J; An H; Seo Y; Jung Y; Lee JS; Choi N; Bong KW
    Biomicrofluidics; 2017 Mar; 11(2):024120. PubMed ID: 28469763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.