These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 28773860)
1. A Facile in Situ and UV Printing Process for Bioinspired Self-Cleaning Surfaces. González Lazo MA; Katrantzis I; Dalle Vacche S; Karasu F; Leterrier Y Materials (Basel); 2016 Aug; 9(9):. PubMed ID: 28773860 [TBL] [Abstract][Full Text] [Related]
2. Biomimetic Rose Petal Structures Obtained Using UV-Nanoimprint Lithography. Oopath SV; Baji A; Abtahi M Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015559 [TBL] [Abstract][Full Text] [Related]
3. One pot synthesis of opposing 'rose petal' and 'lotus leaf' superhydrophobic materials with zinc oxide nanorods. Myint MT; Hornyak GL; Dutta J J Colloid Interface Sci; 2014 Feb; 415():32-8. PubMed ID: 24267327 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of TiO2/PU Superhydrophobic Film by Nanoparticle Assisted Cast Micromolding Process. Li J; Zheng J; Zhang J; Feng J J Nanosci Nanotechnol; 2016 Jun; 16(6):5875-9. PubMed ID: 27427647 [TBL] [Abstract][Full Text] [Related]
5. Robust and Eco-Friendly Superhydrophobic Starch Nanohybrid Materials with Engineered Lotus Leaf Mimetic Multiscale Hierarchical Structures. Ghasemlou M; Le PH; Daver F; Murdoch BJ; Ivanova EP; Adhikari B ACS Appl Mater Interfaces; 2021 Aug; 13(30):36558-36573. PubMed ID: 34284587 [TBL] [Abstract][Full Text] [Related]
6. Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) - new design principles for biomimetic materials. Schulte AJ; Droste DM; Koch K; Barthlott W Beilstein J Nanotechnol; 2011; 2():228-36. PubMed ID: 21977435 [TBL] [Abstract][Full Text] [Related]
7. Biomimetic Superhydrophobic Films with an Extremely Low Roll-Off Angle Modified by F Zhou P; Hu T; Xu Y; Li X; Shi W; Lin Y; Xu T; Wei B Nanomaterials (Basel); 2022 Mar; 12(6):. PubMed ID: 35335766 [TBL] [Abstract][Full Text] [Related]
8. Bioinspired Multifunctional Superhydrophobic Surfaces with Carbon-Nanotube-Based Conducting Pastes by Facile and Scalable Printing. Han JT; Kim BK; Woo JS; Jang JI; Cho JY; Jeong HJ; Jeong SY; Seo SH; Lee GW ACS Appl Mater Interfaces; 2017 Mar; 9(8):7780-7786. PubMed ID: 28155268 [TBL] [Abstract][Full Text] [Related]
9. Preparation and Self-Cleaning Performance of Carbon-Based Superhydrophobic Coatings Based on Non-Fluorine and Non-Toxic Corn Straw. Wang Y; Kang L; Li Z; Su Q; Pang S; Liang L; Wang D; Cao S Molecules; 2021 Oct; 26(21):. PubMed ID: 34770810 [TBL] [Abstract][Full Text] [Related]
10. Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil-Water Separation. Su X; Li H; Lai X; Zhang L; Liao X; Wang J; Chen Z; He J; Zeng X ACS Appl Mater Interfaces; 2018 Jan; 10(4):4213-4221. PubMed ID: 29323869 [TBL] [Abstract][Full Text] [Related]
11. Creation of "Rose Petal" and "Lotus Leaf" Effects on Alumina by Surface Functionalization and Metal-Ion Coordination. Mukhopadhyay RD; Vedhanarayanan B; Ajayaghosh A Angew Chem Int Ed Engl; 2017 Dec; 56(50):16018-16022. PubMed ID: 29053212 [TBL] [Abstract][Full Text] [Related]
12. Dynamics of droplet impingement on bioinspired surface: insights into spreading, anomalous stickiness and break-up. Roy D; Pandey K; Banik M; Mukherjee R; Basu S Proc Math Phys Eng Sci; 2019 Sep; 475(2229):20190260. PubMed ID: 31611721 [TBL] [Abstract][Full Text] [Related]
13. Superhydrophobic lotus-leaf-like surface made from reduced graphene oxide through soft-lithographic duplication. Yun X; Xiong Z; He Y; Wang X RSC Adv; 2020 Jan; 10(9):5478-5486. PubMed ID: 35498279 [TBL] [Abstract][Full Text] [Related]
14. The kapok petal: superhydrophobic surface induced by microscale trichomes. Chen J; Yu S; Fu T; Xu L; Tang Y; Li Z Bioinspir Biomim; 2022 Feb; 17(2):. PubMed ID: 34768250 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation. Sasmal AK; Mondal C; Sinha AK; Gauri SS; Pal J; Aditya T; Ganguly M; Dey S; Pal T ACS Appl Mater Interfaces; 2014 Dec; 6(24):22034-43. PubMed ID: 25419984 [TBL] [Abstract][Full Text] [Related]
16. Facile Adhesion-Tuning of Superhydrophobic Surfaces between "Lotus" and "Petal" Effect and Their Influence on Icing and Deicing Properties. Nine MJ; Tung TT; Alotaibi F; Tran DN; Losic D ACS Appl Mater Interfaces; 2017 Mar; 9(9):8393-8402. PubMed ID: 28192650 [TBL] [Abstract][Full Text] [Related]
17. Using Nanoimprint Lithography to Create Robust, Buoyant, Superhydrophobic PVB/SiO Yang Y; He H; Li Y; Qiu J Sci Rep; 2019 Jul; 9(1):9961. PubMed ID: 31292503 [TBL] [Abstract][Full Text] [Related]
18. Superhydrophobic Al Foorginezhad S; Asadnia M Langmuir; 2023 Dec; 39(50):18311-18326. PubMed ID: 38052486 [TBL] [Abstract][Full Text] [Related]
19. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Liu M; Zheng Y; Zhai J; Jiang L Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of Robust and Effective Oil/Water Separating Superhydrophobic Textile Coatings. Kao LH; Lin WC; Huang CW; Tsai PS Membranes (Basel); 2023 Mar; 13(4):. PubMed ID: 37103828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]