These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 28773879)

  • 1. A Mathematical Model on the Resolution of Extrusion Bioprinting for the Development of New Bioinks.
    Suntornnond R; Tan EYS; An J; Chua CK
    Materials (Basel); 2016 Sep; 9(9):. PubMed ID: 28773879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogel Extrusion Speed Measurements for the Optimization of Bioprinting Parameters.
    Arjoca S; Bojin F; Neagu M; Păunescu A; Neagu A; Păunescu V
    Gels; 2024 Jan; 10(2):. PubMed ID: 38391433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Candidate Bioinks for Extrusion 3D Bioprinting-A Systematic Review of the Literature.
    Tarassoli SP; Jessop ZM; Jovic T; Hawkins K; Whitaker IS
    Front Bioeng Biotechnol; 2021; 9():616753. PubMed ID: 34722473
    [No Abstract]   [Full Text] [Related]  

  • 4. Triblock Copolymer Bioinks in Hydrogel Three-Dimensional Printing for Regenerative Medicine: A Focus on Pluronic F127.
    Shamma RN; Sayed RH; Madry H; El Sayed NS; Cucchiarini M
    Tissue Eng Part B Rev; 2022 Apr; 28(2):451-463. PubMed ID: 33820451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Systematic Thermal Analysis for Accurately Predicting the Extrusion Printability of Alginate-Gelatin-Based Hydrogel Bioinks.
    Li Q; Zhang B; Xue Q; Zhao C; Luo Y; Zhou H; Ma L; Yang H; Bai D
    Int J Bioprint; 2021; 7(3):394. PubMed ID: 34286156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gradient Poly(ethylene glycol) Diacrylate and Cellulose Nanocrystals Tissue Engineering Composite Scaffolds via Extrusion Bioprinting.
    Frost BA; Sutliff BP; Thayer P; Bortner MJ; Foster EJ
    Front Bioeng Biotechnol; 2019; 7():280. PubMed ID: 31681754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved accuracy and precision of bioprinting through progressive cavity pump-controlled extrusion.
    Fisch P; Holub M; Zenobi-Wong M
    Biofabrication; 2020 Dec; 13(1):. PubMed ID: 33086207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced Bioink for 3D Bioprinting of Complex Free-Standing Structures with High Stiffness.
    Gu Y; Schwarz B; Forget A; Barbero A; Martin I; Shastri VP
    Bioengineering (Basel); 2020 Nov; 7(4):. PubMed ID: 33171883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multilayered and heterogeneous hydrogel construct printing system with crosslinking aerosol.
    Lee G; Kim SJ; Chun H; Park JK
    Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34507302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks.
    Cui X; Li J; Hartanto Y; Durham M; Tang J; Zhang H; Hooper G; Lim K; Woodfield T
    Adv Healthc Mater; 2020 Aug; 9(15):e1901648. PubMed ID: 32352649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and quantitative characterization of the precursor rheology of hyaluronic acid hydrogels for bioprinting.
    Kiyotake EA; Douglas AW; Thomas EE; Nimmo SL; Detamore MS
    Acta Biomater; 2019 Sep; 95():176-187. PubMed ID: 30669003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts.
    Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK
    Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate Calibration in Multi-Material 3D Bioprinting for Tissue Engineering.
    Sodupe-Ortega E; Sanz-Garcia A; Pernia-Espinoza A; Escobedo-Lucea C
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30103426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Printing Parameters on 3D Extrusion Printing of Pluronic Hydrogels and Machine Learning Guided Parameter Recommendation.
    Fu Z; Angeline V; Sun W
    Int J Bioprint; 2021; 7(4):434. PubMed ID: 34805600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances.
    Chakraborty A; Roy A; Ravi SP; Paul A
    Biomater Sci; 2021 Sep; 9(19):6337-6354. PubMed ID: 34397056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in bioprinting using silk protein-based bioinks.
    Chakraborty J; Mu X; Pramanick A; Kaplan DL; Ghosh S
    Biomaterials; 2022 Aug; 287():121672. PubMed ID: 35835001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high performance open-source syringe extruder optimized for extrusion and retraction during FRESH 3D bioprinting.
    Tashman JW; Shiwarski DJ; Feinberg AW
    HardwareX; 2021 Apr; 9():. PubMed ID: 34746519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-Dimensional Bioprinting of Perfusable Hierarchical Microchannels with Alginate and Silk Fibroin Double Cross-linked Network.
    Li H; Li N; Zhang H; Zhang Y; Suo H; Wang L; Xu M
    3D Print Addit Manuf; 2020 Apr; 7(2):78-84. PubMed ID: 36654759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Fidelity Extrusion Bioprinting of Low-Printability Polymers Using Carbopol as a Rheology Modifier.
    Barreiro Carpio M; Gonzalez Martinez E; Dabaghi M; Ungureanu J; Arizpe Tafoya AV; Gonzalez Martinez DA; Hirota JA; Moran-Mirabal JM
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):54234-54248. PubMed ID: 37964517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.