These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28773915)

  • 1. Comparative Study on Crack Initiation and Propagation of Glass under Thermal Loading.
    Wang Y; Wang Q; Chen H; Sun J; He L
    Materials (Basel); 2016 Sep; 9(10):. PubMed ID: 28773915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fracture analysis-based mode-I stress intensity factors of crack under fracture grouting in elastic-plastic soils.
    Li L; Deng Y
    Sci Rep; 2023 Jan; 13(1):1389. PubMed ID: 36697491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive Finite Element Modeling of Linear Elastic Fatigue Crack Growth.
    Alshoaibi AM; Bashiri AH
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive Finite Element Model for Simulating Crack Growth in the Presence of Holes.
    Alshoaibi AM; Fageehi YA
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Various Criteria Determining the Direction of Crack Propagation Using the UDMGINI User Procedure Implemented in Abaqus.
    Gontarz J; Podgórski J
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34207273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic mode-dependent damage of cortical bone using the extended finite element method (XFEM).
    Feerick EM; Liu XC; McGarry P
    J Mech Behav Biomed Mater; 2013 Apr; 20():77-89. PubMed ID: 23455165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue Crack Growth Behavior of CP-Ti Cruciform Specimens with Mixed Mode I-II Crack under Biaxial Loading.
    Liu JY; Bao WJ; Zhao JY; Zhou CY
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fracture mechanics analyses of ceramic/veneer interface under mixed-mode loading.
    Wang G; Zhang S; Bian C; Kong H
    J Mech Behav Biomed Mater; 2014 Nov; 39():119-28. PubMed ID: 25123435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixed-mode stress intensity factors for kink cracks with finite kink length loaded in tension and bending: application to dentin and enamel.
    Bechtle S; Fett T; Rizzi G; Habelitz S; Schneider GA
    J Mech Behav Biomed Mater; 2010 May; 3(4):303-12. PubMed ID: 20346898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crack Propagation Analysis of Compression Loaded Rolling Elements.
    Dlhý P; Poduška J; Berer M; Gosch A; Slávik O; Náhlík L; Hutař P
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34069380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Numerical simulation study of fracture mechanics of the atherosclerotic plaque].
    He J; Zhong W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Dec; 38(6):1097-1102. PubMed ID: 34970892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of the Fatigue Crack Growth in Long-Term Operated Mild Steel under Mixed-Mode (I + II, I + III) Loading Conditions.
    Lesiuk G; Smolnicki M; Rozumek D; Krechkovska H; Student O; Correia J; Mech R; De Jesus A
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31906261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Notch Effects on the Stress Intensity Factor and on the Fatigue Crack Path for Eccentric Circular Internal Cracks in Elliptically Notched Round Bars under Tensile Loading.
    Toribio J; González B; Matos JC; González I
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress Intensity Factors for Embedded, Surface, and Corner Cracks in Finite-Thickness Plates Subjected to Tensile Loading.
    Toribio J; González B; Matos JC; Mulas Ó
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34070350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the Initiation of Interface Crack in Rock Joints.
    Chen X; Gao W; Ge S; Zhou C
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue Crack Growth Analysis under Constant Amplitude Loading Using Finite Element Method.
    Alshoaibi AM
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Fatigue Life Prediction Method Based on Strain Intensity Factor.
    Zhang W; Liu H; Wang Q; He J
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Material heterogeneity, microstructure, and microcracks demonstrate differential influence on crack initiation and propagation in cortical bone.
    Demirtas A; Ural A
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1415-1428. PubMed ID: 29808355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing the Stress Intensity Factor of Graphene Sheet with Central Crack.
    Tsai JL; Sie MJ
    J Nanosci Nanotechnol; 2015 May; 15(5):3764-72. PubMed ID: 26505003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Crack Propagation Method for Pipelines with Interacting Corrosion and Crack Defects.
    Xie M; Wang Y; Xiong W; Zhao J; Pei X
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.