These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28774013)

  • 1. Additive Manufacturing of Patient-Customizable Scaffolds for Tubular Tissues Using the Melt-Drawing Method.
    Tan YJ; Tan X; Yeong WY; Tor SB
    Materials (Basel); 2016 Nov; 9(11):. PubMed ID: 28774013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization, mechanical behavior and in vitro evaluation of a melt-drawn scaffold for esophageal tissue engineering.
    Tan YJ; Yeong WY; Tan X; An J; Chian KS; Leong KF
    J Mech Behav Biomed Mater; 2016 Apr; 57():246-59. PubMed ID: 26735183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.
    Stefani I; Cooper-White JJ
    Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melt electrowriting of PLA, PCL, and composite PLA/PCL scaffolds for tissue engineering application.
    Shahverdi M; Seifi S; Akbari A; Mohammadi K; Shamloo A; Movahhedy MR
    Sci Rep; 2022 Nov; 12(1):19935. PubMed ID: 36402790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Throughput Manufacturing of Bio-Resorbable Micro-Porous Scaffolds Made of Poly(L-lactide-co-ε-caprolactone) by Micro-Extrusion for Soft Tissue Engineering Applications.
    Mendibil X; Ortiz R; Viteri VS; Ugartemendia JM; Sarasua JR; Quintana I
    Polymers (Basel); 2019 Dec; 12(1):. PubMed ID: 31878300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of scaffold morphology and cell co-culture on tenogenic differentiation of HADMSC on centrifugal melt electrospun poly (L‑lactic acid) fibrous meshes.
    Wu S; Peng H; Li X; Streubel PN; Liu Y; Duan B
    Biofabrication; 2017 Nov; 9(4):044106. PubMed ID: 29134948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat-Stimuli Shape Memory Effect of Poly (ε-Caprolactone)-Cellulose Acetate Composite Tubular Scaffolds.
    Wang H; Xia H; Xu Z; Hu B; Natsuki T; Ni QQ
    Biomacromolecules; 2022 Oct; 23(10):4074-4084. PubMed ID: 36166624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heparinized PLLA/PLCL nanofibrous scaffold for potential engineering of small-diameter blood vessel: tunable elasticity and anticoagulation property.
    Wang W; Hu J; He C; Nie W; Feng W; Qiu K; Zhou X; Gao Y; Wang G
    J Biomed Mater Res A; 2015 May; 103(5):1784-97. PubMed ID: 25196988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of pore size within fibrous scaffolds fabricated using melt electrowriting on human bone marrow stem cell osteogenesis.
    Brennan CM; Eichholz KF; Hoey DA
    Biomed Mater; 2019 Nov; 14(6):065016. PubMed ID: 31574493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tubular collagen scaffolds with radial elasticity for hollow organ regeneration.
    Versteegden LR; van Kampen KA; Janke HP; Tiemessen DM; Hoogenkamp HR; Hafmans TG; Roozen EA; Lomme RM; van Goor H; Oosterwijk E; Feitz WF; van Kuppevelt TH; Daamen WF
    Acta Biomater; 2017 Apr; 52():1-8. PubMed ID: 28179160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication, mechanical property and in vitro evaluation of poly (L-lactic acid-co-ε-caprolactone) core-shell nanofiber scaffold for tissue engineering.
    Li T; Tian L; Liao S; Ding X; Irvine SA; Ramakrishna S
    J Mech Behav Biomed Mater; 2019 Oct; 98():48-57. PubMed ID: 31195187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction and characterization of an electrospun tubular scaffold for small-diameter tissue-engineered vascular grafts: a scaffold membrane approach.
    Hu JJ; Chao WC; Lee PY; Huang CH
    J Mech Behav Biomed Mater; 2012 Sep; 13():140-55. PubMed ID: 22854316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parametric control of fiber morphology and tensile mechanics in scaffolds with high aspect ratio geometry produced via melt electrowriting for musculoskeletal soft tissue engineering.
    Warren PB; Davis ZG; Fisher MB
    J Mech Behav Biomed Mater; 2019 Nov; 99():153-160. PubMed ID: 31352215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of poly (ϵ-caprolactone) microfiber scaffolds with varying topography and mechanical properties for stem cell-based tissue engineering applications.
    Ko J; Mohtaram NK; Ahmed F; Montgomery A; Carlson M; Lee PC; Willerth SM; Jun MB
    J Biomater Sci Polym Ed; 2014; 25(1):1-17. PubMed ID: 23998440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-Dimensional Microfibrous Scaffold with Aligned Topography Produced via a Combination of Melt-Extrusion Additive Manufacturing and Porogen Leaching for In Vitro Skeletal Muscle Modeling.
    Spedicati M; Zoso A; Mortati L; Chiono V; Marcello E; Carmagnola I
    Bioengineering (Basel); 2024 Mar; 11(4):. PubMed ID: 38671754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additive Manufacturing of Poly(3-hydroxybutyrate-
    Pecorini G; Braccini S; Parrini G; Chiellini F; Puppi D
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controllable four axis extrusion-based additive manufacturing system for the fabrication of tubular scaffolds with tailorable mechanical properties.
    van Kampen KA; Olaret E; Stancu IC; Moroni L; Mota C
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111472. PubMed ID: 33321595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchically designed electrospun tubular scaffolds for cardiovascular applications.
    Shalumon KT; Sreerekha PR; Sathish D; Tamura H; Nair SV; Chennazhi KP; Jayakumar R
    J Biomed Nanotechnol; 2011 Oct; 7(5):609-20. PubMed ID: 22195478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A collagen/smooth muscle cell-incorporated elastic scaffold for tissue-engineered vascular grafts.
    Park IS; Kim SH; Kim YH; Kim IH; Kim SH
    J Biomater Sci Polym Ed; 2009; 20(11):1645-60. PubMed ID: 19619403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable fiber orientation and nonlinear elasticity of electrospun nanofibrous small diameter tubular scaffolds for vascular tissue engineering.
    Niu Z; Wang X; Meng X; Guo X; Jiang Y; Xu Y; Li Q; Shen C
    Biomed Mater; 2019 Mar; 14(3):035006. PubMed ID: 30776786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.