These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 28774013)
21. Statistical modelling and optimization of print quality and mechanical properties of customized tubular scaffolds fabricated using solvent-based extrusion 3D printing process. Kandi R; Pandey PM Proc Inst Mech Eng H; 2021 Dec; 235(12):1421-1438. PubMed ID: 34269125 [TBL] [Abstract][Full Text] [Related]
22. Microfibrous scaffolds from poly(l-lactide-co-ε-caprolactone) blended with xeno-free collagen/hyaluronic acid for improvement of vascularization in tissue engineering applications. Kenar H; Ozdogan CY; Dumlu C; Doger E; Kose GT; Hasirci V Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():31-44. PubMed ID: 30678916 [TBL] [Abstract][Full Text] [Related]
23. Embryonic Mesenchymal Multipotent Cell Differentiation on Electrospun Biodegradable Poly(ester amide) Scaffolds for Model Vascular Tissue Fabrication. Kiros S; Lin S; Xing M; Mequanint K Ann Biomed Eng; 2020 Mar; 48(3):980-991. PubMed ID: 31062257 [TBL] [Abstract][Full Text] [Related]
24. Fabrication of a new tubular fibrous PLCL scaffold for vascular tissue engineering. Kim SH; Kwon JH; Chung MS; Chung E; Jung Y; Kim SH; Kim YH J Biomater Sci Polym Ed; 2006; 17(12):1359-74. PubMed ID: 17260508 [TBL] [Abstract][Full Text] [Related]
25. Fabrication of multilayer tubular scaffolds with aligned nanofibers to guide the growth of endothelial cells. Hu Q; Su C; Zeng Z; Zhang H; Feng R; Feng J; Li S J Biomater Appl; 2020; 35(4-5):553-566. PubMed ID: 32611277 [TBL] [Abstract][Full Text] [Related]
26. Melt Electrowritten Sandwich Scaffold Technique Using Sulforhodamine B to Monitor Stem Cell Behavior. Turner PR; Yoshida M; Ali MA; Cabral JD Tissue Eng Part C Methods; 2020 Oct; 26(10):519-527. PubMed ID: 32977739 [No Abstract] [Full Text] [Related]
27. Dual-Scale Polymeric Constructs as Scaffolds for Tissue Engineering. Mota C; Puppi D; Dinucci D; Errico C; Bártolo P; Chiellini F Materials (Basel); 2011 Mar; 4(3):527-542. PubMed ID: 28880003 [TBL] [Abstract][Full Text] [Related]
28. Melt Electrowriting of Complex 3D Anatomically Relevant Scaffolds. Saidy NT; Shabab T; Bas O; Rojas-González DM; Menne M; Henry T; Hutmacher DW; Mela P; De-Juan-Pardo EM Front Bioeng Biotechnol; 2020; 8():793. PubMed ID: 32850700 [TBL] [Abstract][Full Text] [Related]
29. Volumetric Printing Across Melt Electrowritten Scaffolds Fabricates Multi-Material Living Constructs with Tunable Architecture and Mechanics. Größbacher G; Bartolf-Kopp M; Gergely C; Bernal PN; Florczak S; de Ruijter M; Rodriguez NG; Groll J; Malda J; Jungst T; Levato R Adv Mater; 2023 Aug; 35(32):e2300756. PubMed ID: 37099802 [TBL] [Abstract][Full Text] [Related]
30. Osteoregenerative Potential of 3D-Printed Poly Lawrence LM; Salary RR; Miller V; Valluri A; Denning KL; Case-Perry S; Abdelgaber K; Smith S; Claudio PP; Day JB Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902373 [TBL] [Abstract][Full Text] [Related]
31. Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(L-lactide-co-epsilon-caprolactone). Jung Y; Park MS; Lee JW; Kim YH; Kim SH; Kim SH Biomaterials; 2008 Dec; 29(35):4630-6. PubMed ID: 18804279 [TBL] [Abstract][Full Text] [Related]
32. Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering. Wu T; Zhang J; Wang Y; Li D; Sun B; El-Hamshary H; Yin M; Mo X Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():121-129. PubMed ID: 29025640 [TBL] [Abstract][Full Text] [Related]
33. Melt electrowriting of a biocompatible photo-crosslinkable poly(D,L-lactic acid)/poly(ε-caprolactone)-based material with tunable mechanical and functionalization properties. Darroch C; Asaro GA; Gréant C; Suku M; Pien N; van Vlierberghe S; Monaghan MG J Biomed Mater Res A; 2023 Jun; 111(6):851-862. PubMed ID: 36951312 [TBL] [Abstract][Full Text] [Related]
34. A comparison between β-tricalcium phosphate and chitosan poly-caprolactone-based 3D melt extruded composite scaffolds. Yoshida M; Turner PR; McAdam CJ; Ali MA; Cabral JD Biopolymers; 2022 Apr; 113(4):e23482. PubMed ID: 34812488 [TBL] [Abstract][Full Text] [Related]
35. Effects of pulsatile bioreactor culture on vascular smooth muscle cells seeded on electrospun poly (lactide-co-ε-caprolactone) scaffold. Mun CH; Jung Y; Kim SH; Kim HC; Kim SH Artif Organs; 2013 Dec; 37(12):E168-78. PubMed ID: 23834728 [TBL] [Abstract][Full Text] [Related]
36. Poly(ε-caprolactone) Scaffolds Fabricated by Melt Electrospinning for Bone Tissue Engineering. Zaiss S; Brown TD; Reichert JC; Berner A Materials (Basel); 2016 Mar; 9(4):. PubMed ID: 28773353 [TBL] [Abstract][Full Text] [Related]
37. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration. Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708 [TBL] [Abstract][Full Text] [Related]
38. Controlling the extrudate swell in melt extrusion additive manufacturing of 3D scaffolds: a designed experiment. Yousefi AM; Smucker B; Naber A; Wyrick C; Shaw C; Bennett K; Szekely S; Focke C; Wood KA J Biomater Sci Polym Ed; 2018 Feb; 29(3):195-216. PubMed ID: 29161997 [TBL] [Abstract][Full Text] [Related]
39. Polyhydroxybutyrate-based osteoinductive mineralized electrospun structures that mimic components and tissue interfaces of the osteon for bone tissue engineering. Sriram M; Priya S; Katti DS Biofabrication; 2024 Mar; 16(2):. PubMed ID: 38471166 [TBL] [Abstract][Full Text] [Related]
40. Tissue-specific melt electrowritten polymeric scaffolds for coordinated regeneration of soft and hard periodontal tissues. Daghrery A; Ferreira JA; Xu J; Golafshan N; Kaigler D; Bhaduri SB; Malda J; Castilho M; Bottino MC Bioact Mater; 2023 Jan; 19():268-281. PubMed ID: 35574052 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]