These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 28774013)
61. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration. Jung Y; Kim SH; You HJ; Kim SH; Kim YH; Min BG J Biomater Sci Polym Ed; 2008; 19(8):1073-85. PubMed ID: 18644232 [TBL] [Abstract][Full Text] [Related]
62. Fabrication of a mimetic vascular graft using melt spinning with tailorable fiber parameters. van Kampen KA; Fernández-Pérez J; Baker M; Mota C; Moroni L Biomater Adv; 2022 Aug; 139():212972. PubMed ID: 35882129 [TBL] [Abstract][Full Text] [Related]
63. Tailored Melt Electrowritten Scaffolds for the Generation of Sheet-Like Tissue Constructs from Multicellular Spheroids. McMaster R; Hoefner C; Hrynevich A; Blum C; Wiesner M; Wittmann K; Dargaville TR; Bauer-Kreisel P; Groll J; Dalton PD; Blunk T Adv Healthc Mater; 2019 Apr; 8(7):e1801326. PubMed ID: 30835969 [TBL] [Abstract][Full Text] [Related]
64. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds. Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740 [TBL] [Abstract][Full Text] [Related]
65. Electrospun poly(ester-Urethane)- and poly(ester-Urethane-Urea) fleeces as promising tissue engineering scaffolds for adipose-derived stem cells. Gugerell A; Kober J; Laube T; Walter T; Nürnberger S; Grönniger E; Brönneke S; Wyrwa R; Schnabelrauch M; Keck M PLoS One; 2014; 9(3):e90676. PubMed ID: 24594923 [TBL] [Abstract][Full Text] [Related]
66. Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering. Chen CH; Shyu VB; Chen JP; Lee MY Biofabrication; 2014 Mar; 6(1):015004. PubMed ID: 24429581 [TBL] [Abstract][Full Text] [Related]
67. Fabrication and in vitro evaluation of PCL/gelatin hierarchical scaffolds based on melt electrospinning writing and solution electrospinning for bone regeneration. Wang Z; Wang H; Xiong J; Li J; Miao X; Lan X; Liu X; Wang W; Cai N; Tang Y Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112287. PubMed ID: 34474838 [TBL] [Abstract][Full Text] [Related]
68. Osteogenic Differentiation of Mesenchymal Stem Cells with Silica-Coated Gold Nanoparticles for Bone Tissue Engineering. Gandhimathi C; Quek YJ; Ezhilarasu H; Ramakrishna S; Bay BH; Srinivasan DK Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31623264 [TBL] [Abstract][Full Text] [Related]
69. Customized additive manufacturing of porous Ti6Al4V scaffold with micro-topological structures to regulate cell behavior in bone tissue engineering. Lei H; Yi T; Fan H; Pei X; Wu L; Xing F; Li M; Liu L; Zhou C; Fan Y; Zhang X Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111789. PubMed ID: 33545915 [TBL] [Abstract][Full Text] [Related]
70. Cardiogenic differentiation of mesenchymal stem cells on elastomeric poly (glycerol sebacate)/collagen core/shell fibers. Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Ramakrishna S World J Cardiol; 2013 Mar; 5(3):28-41. PubMed ID: 23539543 [TBL] [Abstract][Full Text] [Related]
71. Fabrication of microfibrous and nano-/microfibrous scaffolds: melt and hybrid electrospinning and surface modification of poly(L-lactic acid) with plasticizer. Yoon YI; Park KE; Lee SJ; Park WH Biomed Res Int; 2013; 2013():309048. PubMed ID: 24381937 [TBL] [Abstract][Full Text] [Related]
72. Tubular scaffolds of gelatin and poly(ε-caprolactone)-block-poly(γ-glutamic acid) blending hydrogel for the proliferation of the primary intestinal smooth muscle cells of rats. Jwo SC; Chiu CH; Tang SJ; Hsieh MF Biomed Mater; 2013 Dec; 8(6):065002. PubMed ID: 24225182 [TBL] [Abstract][Full Text] [Related]
73. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Baker BM; Gee AO; Metter RB; Nathan AS; Marklein RA; Burdick JA; Mauck RL Biomaterials; 2008 May; 29(15):2348-58. PubMed ID: 18313138 [TBL] [Abstract][Full Text] [Related]
74. Topographic Guidance in Melt-Electrowritten Tubular Scaffolds Enhances Engineered Kidney Tubule Performance. van Genderen AM; Jansen K; Kristen M; van Duijn J; Li Y; Schuurmans CCL; Malda J; Vermonden T; Jansen J; Masereeuw R; Castilho M Front Bioeng Biotechnol; 2020; 8():617364. PubMed ID: 33537294 [No Abstract] [Full Text] [Related]
75. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering. Lee SH; Kim BS; Kim SH; Choi SW; Jeong SI; Kwon IK; Kang SW; Nikolovski J; Mooney DJ; Han YK; Kim YH J Biomed Mater Res A; 2003 Jul; 66(1):29-37. PubMed ID: 12833428 [TBL] [Abstract][Full Text] [Related]
76. Electrospun biomaterial scaffolds with varied topographies for neuronal differentiation of human-induced pluripotent stem cells. Mohtaram NK; Ko J; King C; Sun L; Muller N; Jun MB; Willerth SM J Biomed Mater Res A; 2015 Aug; 103(8):2591-601. PubMed ID: 25524598 [TBL] [Abstract][Full Text] [Related]
77. Bilayered scaffold for engineering cellularized blood vessels. Ju YM; Choi JS; Atala A; Yoo JJ; Lee SJ Biomaterials; 2010 May; 31(15):4313-21. PubMed ID: 20188414 [TBL] [Abstract][Full Text] [Related]
78. Recent advances in melt electro writing for tissue engineering for 3D printing of microporous scaffolds for tissue engineering. Loewner S; Heene S; Baroth T; Heymann H; Cholewa F; Blume H; Blume C Front Bioeng Biotechnol; 2022; 10():896719. PubMed ID: 36061443 [TBL] [Abstract][Full Text] [Related]
79. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Bittner SM; Smith BT; Diaz-Gomez L; Hudgins CD; Melchiorri AJ; Scott DW; Fisher JP; Mikos AG Acta Biomater; 2019 May; 90():37-48. PubMed ID: 30905862 [TBL] [Abstract][Full Text] [Related]
80. Shape-Morphing Fibrous Hydrogel/Elastomer Bilayers Fabricated by a Combination of 3D Printing and Melt Electrowriting for Muscle Tissue Regeneration. Uribe-Gomez J; Posada-Murcia A; Shukla A; Ergin M; Constante G; Apsite I; Martin D; Schwarzer M; Caspari A; Synytska A; Salehi S; Ionov L ACS Appl Bio Mater; 2021 Feb; 4(2):1720-1730. PubMed ID: 35014518 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]