These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 28774177)

  • 1. Intramolecular Interactions Overcome Hydration to Drive the Collapse Transition of Gly
    Asthagiri D; Karandur D; Tomar DS; Pettitt BM
    J Phys Chem B; 2017 Aug; 121(34):8078-8084. PubMed ID: 28774177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of Hydrophilic Hydration and Intramolecular Interactions in the Thermodynamics of Helix-Coil Transition and Helix-Helix Assembly in a Deca-Alanine Peptide.
    Tomar DS; Weber V; Pettitt BM; Asthagiri D
    J Phys Chem B; 2016 Jan; 120(1):69-76. PubMed ID: 26649757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conditional solvation thermodynamics of isoleucine in model peptides and the limitations of the group-transfer model.
    Tomar DS; Weber V; Pettitt BM; Asthagiri D
    J Phys Chem B; 2014 Apr; 118(15):4080-7. PubMed ID: 24650057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide backbone effect on hydration free energies of amino acid side chains.
    Hajari T; van der Vegt NF
    J Phys Chem B; 2014 Nov; 118(46):13162-8. PubMed ID: 25338222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein collapse driven against solvation free energy without H-bonds.
    Karandur D; Harris RC; Pettitt BM
    Protein Sci; 2016 Jan; 25(1):103-10. PubMed ID: 26174309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Driving forces for adsorption of amphiphilic peptides to the air-water interface.
    Engin O; Villa A; Sayar M; Hess B
    J Phys Chem B; 2010 Sep; 114(34):11093-101. PubMed ID: 20687527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting the energetics of hydrophobic hydration of polypeptides.
    Matysiak S; Debenedetti PG; Rossky PJ
    J Phys Chem B; 2011 Dec; 115(49):14859-65. PubMed ID: 22035038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A driving force for polypeptide and protein collapse.
    Merlino A; Pontillo N; Graziano G
    Phys Chem Chem Phys; 2016 Dec; 19(1):751-756. PubMed ID: 27929162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence of dynamical constraints imposed by water organization around a bio-hydrophobic interface.
    Russo D; Gonzalez MA; Pellegrini E; Combet J; Ollivier J; Teixeira J
    J Phys Chem B; 2013 Mar; 117(10):2829-36. PubMed ID: 23414252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of noncovalent interactions in deprotonated peptides: structural and energetic competition between aggregation and hydration.
    Liu D; Wyttenbach T; Carpenter CJ; Bowers MT
    J Am Chem Soc; 2004 Mar; 126(10):3261-70. PubMed ID: 15012157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single polymer studies of hydrophobic hydration.
    Li IT; Walker GC
    Acc Chem Res; 2012 Nov; 45(11):2011-21. PubMed ID: 22568748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvophobic and solvophilic contributions in the water-to-aqueous guanidinium chloride transfer free energy of model peptides.
    Tomar DS; Ramesh N; Asthagiri D
    J Chem Phys; 2018 Jun; 148(22):222822. PubMed ID: 29907034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial free energy governs single polystyrene chain collapse in water and aqueous solutions.
    Li IT; Walker GC
    J Am Chem Soc; 2010 May; 132(18):6530-40. PubMed ID: 20405838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the coupling between the dynamics of protein and water.
    Gavrilov Y; Leuchter JD; Levy Y
    Phys Chem Chem Phys; 2017 Mar; 19(12):8243-8257. PubMed ID: 28277584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lattice models for proteins reveal multiple folding nuclei for nucleation-collapse mechanism.
    Klimov DK; Thirumalai D
    J Mol Biol; 1998 Sep; 282(2):471-92. PubMed ID: 9735420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of hydration water on the dynamics of side chains of hydrophobic peptides: from dry powder to highly concentrated solutions.
    Russo D; Teixeira J; Ollivier J
    J Chem Phys; 2009 Jun; 130(23):235101. PubMed ID: 19548762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local order, energy, and mobility of water molecules in the hydration shell of small peptides.
    Agarwal M; Kushwaha HR; Chakravarty C
    J Phys Chem B; 2010 Jan; 114(1):651-9. PubMed ID: 19863091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic evaluation of bundled SPC water for biomolecular simulations.
    Gopal SM; Kuhn AB; Schäfer LV
    Phys Chem Chem Phys; 2015 Apr; 17(13):8393-406. PubMed ID: 25588773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of hydrophobic hydration in protein stability: a 3D water-explicit protein model exhibiting cold and heat denaturation.
    Matysiak S; Debenedetti PG; Rossky PJ
    J Phys Chem B; 2012 Jul; 116(28):8095-104. PubMed ID: 22725973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetics and self-assembly of amphipathic peptide pores in lipid membranes.
    Zemel A; Fattal DR; Ben-Shaul A
    Biophys J; 2003 Apr; 84(4):2242-55. PubMed ID: 12668433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.