These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 28774442)

  • 1. Computational modeling for prediction of the shear stress of three-dimensional isotropic and aligned fiber networks.
    Park S
    Comput Methods Programs Biomed; 2017 Sep; 148():91-98. PubMed ID: 28774442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element analysis of mechanical behavior, permeability and fluid induced wall shear stress of high porosity scaffolds with gyroid and lattice-based architectures.
    Ali D; Sen S
    J Mech Behav Biomed Mater; 2017 Nov; 75():262-270. PubMed ID: 28759838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cells in 3D matrices under interstitial flow: effects of extracellular matrix alignment on cell shear stress and drag forces.
    Pedersen JA; Lichter S; Swartz MA
    J Biomech; 2010 Mar; 43(5):900-5. PubMed ID: 20006339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Darcian permeability constant as indicator for shear stresses in regular scaffold systems for tissue engineering.
    Vossenberg P; Higuera GA; van Straten G; van Blitterswijk CA; van Boxtel AJ
    Biomech Model Mechanobiol; 2009 Dec; 8(6):499-507. PubMed ID: 19360445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational study of the blood flow in three types of 3D hollow fiber membrane bundles.
    Zhang J; Chen X; Ding J; Fraser KH; Taskin ME; Griffith BP; Wu ZJ
    J Biomech Eng; 2013 Dec; 135(12):121009. PubMed ID: 24141394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study.
    Truscello S; Kerckhofs G; Van Bael S; Pyka G; Schrooten J; Van Oosterwyck H
    Acta Biomater; 2012 Apr; 8(4):1648-58. PubMed ID: 22210520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Fluid Dynamics Study of the Effects of Surface Roughness on Permeability and Fluid Flow-Induced Wall Shear Stress in Scaffolds.
    Ali D; Sen S
    Ann Biomed Eng; 2018 Dec; 46(12):2023-2035. PubMed ID: 30030771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of extracellular fiber architecture on cell membrane shear stress in a 3D fibrous matrix.
    Pedersen JA; Boschetti F; Swartz MA
    J Biomech; 2007; 40(7):1484-92. PubMed ID: 16987520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perfusion characteristics of the human hepatic microcirculation based on three-dimensional reconstructions and computational fluid dynamic analysis.
    Debbaut C; Vierendeels J; Casteleyn C; Cornillie P; Van Loo D; Simoens P; Van Hoorebeke L; Monbaliu D; Segers P
    J Biomech Eng; 2012 Jan; 134(1):011003. PubMed ID: 22482658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Permeability and fluid flow-induced wall shear stress of bone tissue scaffolds: Computational fluid dynamic analysis using Newtonian and non-Newtonian blood flow models.
    Ali D; Sen S
    Comput Biol Med; 2018 Aug; 99():201-208. PubMed ID: 29957377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulation of the effect of permeability on the hydrodynamics in a parallel-plate coculture flow chamber.
    Zeng Y; Yao XH; Liu XH
    Comput Methods Biomech Biomed Engin; 2014; 17(8):875-87. PubMed ID: 22994242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical modeling of anisotropic fiber bundle behavior in oxygenators.
    Bhavsar SS; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2011 Nov; 35(11):1095-102. PubMed ID: 21973082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microstructurally based continuum model of cartilage viscoelasticity and permeability incorporating measured statistical fiber orientations.
    Pierce DM; Unterberger MJ; Trobin W; Ricken T; Holzapfel GA
    Biomech Model Mechanobiol; 2016 Feb; 15(1):229-44. PubMed ID: 26001349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A three-dimensional computational fluid dynamics model of shear stress distribution during neotissue growth in a perfusion bioreactor.
    Guyot Y; Luyten FP; Schrooten J; Papantoniou I; Geris L
    Biotechnol Bioeng; 2015 Dec; 112(12):2591-600. PubMed ID: 26059101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow rates in perfusion bioreactors to maximise mineralisation in bone tissue engineering in vitro.
    Zhao F; van Rietbergen B; Ito K; Hofmann S
    J Biomech; 2018 Oct; 79():232-237. PubMed ID: 30149981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear model on pulsatile flow of blood through a porous bifurcated arterial stenosis in the presence of magnetic field and periodic body acceleration.
    Ponalagusamy R; Priyadharshini S
    Comput Methods Programs Biomed; 2017 Apr; 142():31-41. PubMed ID: 28325445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore-Scale Modeling of Non-Newtonian Shear-Thinning Fluids in Blood Oxygenator Design.
    Low KW; van Loon R; Rolland SA; Sienz J
    J Biomech Eng; 2016 May; 138(5):051001. PubMed ID: 26902524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational simulations predict a key role for oscillatory fluid shear stress in de novo valvular tissue formation.
    Salinas M; Ramaswamy S
    J Biomech; 2014 Nov; 47(14):3517-23. PubMed ID: 25262874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fiber matrix model for interstitial fluid flow and permeability in ligaments and tendons.
    Chen CT; Malkus DS; Vanderby R
    Biorheology; 1998; 35(2):103-18. PubMed ID: 10193483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.