These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 28774586)

  • 1. Utilization of chemically treated municipal solid waste (spent coffee bean powder) as reinforcement in cellulose matrix for packaging applications.
    Thiagamani SMK; Nagarajan R; Jawaid M; Anumakonda V; Siengchin S
    Waste Manag; 2017 Nov; 69():445-454. PubMed ID: 28774586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and properties of cellulose/Thespesia lampas microfiber composite films.
    B A; K OR; Feng H; A VR
    Int J Biol Macromol; 2019 Apr; 127():153-158. PubMed ID: 30639652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-cellulose composite films with cellulose matrix and Napier grass cellulose fibril fillers.
    Senthil Muthu Kumar T; Rajini N; Obi Reddy K; Varada Rajulu A; Siengchin S; Ayrilmis N
    Int J Biol Macromol; 2018 Jun; 112():1310-1315. PubMed ID: 29408356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of cellulose/Thespesia lampas short fibers bio-composite films.
    Ashok B; Reddy KO; Madhukar K; Cai J; Zhang L; Rajulu AV
    Carbohydr Polym; 2015; 127():110-5. PubMed ID: 25965463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulose nanocomposite films with in situ generated silver nanoparticles using Cassia alata leaf extract as a reducing agent.
    Sivaranjana P; Nagarajan ER; Rajini N; Jawaid M; Rajulu AV
    Int J Biol Macromol; 2017 Jun; 99():223-232. PubMed ID: 28237574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production and physicochemical properties of carboxymethyl cellulose films enriched with spent coffee grounds polysaccharides.
    Ballesteros LF; Cerqueira MA; Teixeira JA; Mussatto SI
    Int J Biol Macromol; 2018 Jan; 106():647-655. PubMed ID: 28811206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution.
    Qi H; Cai J; Zhang L; Kuga S
    Biomacromolecules; 2009 Jun; 10(6):1597-602. PubMed ID: 19415903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and properties of biodegradable films from Sterculia urens short fiber/cellulose green composites.
    Jayaramudu J; Reddy GS; Varaprasad K; Sadiku ER; Sinha Ray S; Varada Rajulu A
    Carbohydr Polym; 2013 Apr; 93(2):622-7. PubMed ID: 23499104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and properties of cellulose nanocomposite films with in situ generated copper nanoparticles using Terminalia catappa leaf extract.
    Muthulakshmi L; Rajini N; Nellaiah H; Kathiresan T; Jawaid M; Rajulu AV
    Int J Biol Macromol; 2017 Feb; 95():1064-1071. PubMed ID: 27984140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of cellulose composites with in situ generated copper nanoparticles using leaf extract and their properties.
    Sadanand V; Rajini N; Varada Rajulu A; Satyanarayana B
    Carbohydr Polym; 2016 Oct; 150():32-9. PubMed ID: 27312610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concentrated sulfuric acid aqueous solution enables rapid recycling of cellulose from waste paper into antimicrobial packaging.
    Oliva C; Huang W; El Badri S; Lee MAL; Ronholm J; Chen L; Wang Y
    Carbohydr Polym; 2020 Aug; 241():116256. PubMed ID: 32507215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulose-based films prepared directly from waste newspapers via an ionic liquid.
    Xia G; Wan J; Zhang J; Zhang X; Xu L; Wu J; He J; Zhang J
    Carbohydr Polym; 2016 Oct; 151():223-229. PubMed ID: 27474561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transparent cellulose films with high gas barrier properties fabricated from aqueous alkali/urea solutions.
    Yang Q; Fukuzumi H; Saito T; Isogai A; Zhang L
    Biomacromolecules; 2011 Jul; 12(7):2766-71. PubMed ID: 21657790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforcement of all-cellulose nanocomposite films using native cellulose nanofibrils.
    Zhao J; He X; Wang Y; Zhang W; Zhang X; Zhang X; Deng Y; Lu C
    Carbohydr Polym; 2014 Apr; 104():143-50. PubMed ID: 24607171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste.
    Chen D; Lawton D; Thompson MR; Liu Q
    Carbohydr Polym; 2012 Sep; 90(1):709-16. PubMed ID: 24751097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of preparation techniques of cellulose II nanocrystals as reinforcement for tannery solid waste-based gelatin composite films.
    Muralidharan V; Gochhayat S; Palanivel S; Madhan B
    Environ Sci Pollut Res Int; 2023 Feb; 30(6):14284-14303. PubMed ID: 36152092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel natural composite films as packaging materials with enhanced properties.
    Mohamed SAA; El-Sakhawy M; Nashy EHA; Othman AM
    Int J Biol Macromol; 2019 Sep; 136():774-784. PubMed ID: 31226378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dispersion of SiC nanoparticles in cellulose for study of tensile, thermal and oxygen barrier properties.
    Kisku SK; Dash S; Swain SK
    Carbohydr Polym; 2014 Jan; 99():306-10. PubMed ID: 24274511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis.L.
    Senthamaraikannan P; Kathiresan M
    Carbohydr Polym; 2018 Apr; 186():332-343. PubMed ID: 29455994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coffee Waste Macro-Particle Enhancement in Biopolymer Materials for Edible Packaging.
    Rizal S; Abdul Khalil HPS; Hamid SA; Ikramullah I; Kurniawan R; Hazwan CM; Muksin U; Aprilia S; Alfatah T
    Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.