BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 28775211)

  • 1. Structure of the complete elongation complex of RNA polymerase II with basal factors.
    Ehara H; Yokoyama T; Shigematsu H; Yokoyama S; Shirouzu M; Sekine SI
    Science; 2017 Sep; 357(6354):921-924. PubMed ID: 28775211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Architecture of the RNA polymerase II elongation complex: new insights into Spt4/5 and Elf1.
    Ehara H; Sekine SI
    Transcription; 2018; 9(5):286-291. PubMed ID: 29624124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of transcribing mammalian RNA polymerase II.
    Bernecky C; Herzog F; Baumeister W; Plitzko JM; Cramer P
    Nature; 2016 Jan; 529(7587):551-4. PubMed ID: 26789250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical Analysis of Yeast Suppressor of Ty 4/5 (Spt4/5) Reveals the Importance of Nucleic Acid Interactions in the Prevention of RNA Polymerase II Arrest.
    Crickard JB; Fu J; Reese JC
    J Biol Chem; 2016 May; 291(19):9853-70. PubMed ID: 26945063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for the initiation of eukaryotic transcription-coupled DNA repair.
    Xu J; Lahiri I; Wang W; Wier A; Cianfrocco MA; Chong J; Hare AA; Dervan PB; DiMaio F; Leschziner AE; Wang D
    Nature; 2017 Nov; 551(7682):653-657. PubMed ID: 29168508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of the roles of Spt5-nucleic acid contacts in promoter proximal pausing of RNA polymerase II.
    Dollinger R; Deng EB; Schultz J; Wu S; Deorio HR; Gilmour DS
    J Biol Chem; 2023 Sep; 299(9):105106. PubMed ID: 37517697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of a transcribing RNA polymerase II-DSIF complex reveals a multidentate DNA-RNA clamp.
    Bernecky C; Plitzko JM; Cramer P
    Nat Struct Mol Biol; 2017 Oct; 24(10):809-815. PubMed ID: 28892040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insight into nucleosome transcription by RNA polymerase II with elongation factors.
    Ehara H; Kujirai T; Fujino Y; Shirouzu M; Kurumizaka H; Sekine SI
    Science; 2019 Feb; 363(6428):744-747. PubMed ID: 30733384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity.
    Martinez-Rucobo FW; Sainsbury S; Cheung AC; Cramer P
    EMBO J; 2011 Apr; 30(7):1302-10. PubMed ID: 21386817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of paused transcription complex Pol II-DSIF-NELF.
    Vos SM; Farnung L; Urlaub H; Cramer P
    Nature; 2018 Aug; 560(7720):601-606. PubMed ID: 30135580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of activated transcription complex Pol II-DSIF-PAF-SPT6.
    Vos SM; Farnung L; Boehning M; Wigge C; Linden A; Urlaub H; Cramer P
    Nature; 2018 Aug; 560(7720):607-612. PubMed ID: 30135578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allosteric transcription stimulation by RNA polymerase II super elongation complex.
    Chen Y; Vos SM; Dienemann C; Ninov M; Urlaub H; Cramer P
    Mol Cell; 2021 Aug; 81(16):3386-3399.e10. PubMed ID: 34265249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opposite roles of transcription elongation factors Spt4/5 and Elf1 in RNA polymerase II transcription through B-form versus non-B DNA structures.
    Xu J; Chong J; Wang D
    Nucleic Acids Res; 2021 May; 49(9):4944-4953. PubMed ID: 33877330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis of archaeal RNA polymerase transcription elongation and Spt4/5 recruitment.
    Tarău D; Grünberger F; Pilsl M; Reichelt R; Heiß F; König S; Urlaub H; Hausner W; Engel C; Grohmann D
    Nucleic Acids Res; 2024 Jun; 52(10):6017-6035. PubMed ID: 38709902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures and Functions of the Multiple KOW Domains of Transcription Elongation Factor Spt5.
    Meyer PA; Li S; Zhang M; Yamada K; Takagi Y; Hartzog GA; Fu J
    Mol Cell Biol; 2015 Oct; 35(19):3354-69. PubMed ID: 26217010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into how Spt5 functions in transcription elongation and repressing transcription coupled DNA repair.
    Li W; Giles C; Li S
    Nucleic Acids Res; 2014 Jun; 42(11):7069-83. PubMed ID: 24813444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core structure of the yeast spt4-spt5 complex: a conserved module for regulation of transcription elongation.
    Guo M; Xu F; Yamada J; Egelhofer T; Gao Y; Hartzog GA; Teng M; Niu L
    Structure; 2008 Nov; 16(11):1649-58. PubMed ID: 19000817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein-Nucleic Acid Interactions for RNA Polymerase II Elongation Factors by Molecular Dynamics Simulations.
    Gallardo A; Bogart BM; Dutagaci B
    J Chem Inf Model; 2022 Jun; 62(12):3079-3089. PubMed ID: 35686985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis of exoribonuclease-mediated mRNA transcription termination.
    Zeng Y; Zhang HW; Wu XX; Zhang Y
    Nature; 2024 Apr; 628(8009):887-893. PubMed ID: 38538796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elongator and SPT4/SPT5 complexes as proxy to study RNA polymerase II transcript elongation control of plant development.
    Van Lijsebettens M; Dürr J; Woloszynska M; Grasser KD
    Proteomics; 2014 Oct; 14(19):2109-14. PubMed ID: 24733746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.