These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 28775268)

  • 21. Combinatorial development of bulk metallic glasses.
    Ding S; Liu Y; Li Y; Liu Z; Sohn S; Walker FJ; Schroers J
    Nat Mater; 2014 May; 13(5):494-500. PubMed ID: 24728462
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atomic-scale simulation to study the dynamical properties and local structure of Cu-Zr and Ni-Zr metallic glass-forming alloys.
    Yang MH; Li Y; Li JH; Liu BX
    Phys Chem Chem Phys; 2016 Mar; 18(10):7169-83. PubMed ID: 26888279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of critical cooling rates in metallic glass forming alloy libraries through laser spike annealing.
    Bordeenithikasem P; Liu J; Kube SA; Li Y; Ma T; Scanley BE; Broadbridge CC; Vlassak JJ; Singer JP; Schroers J
    Sci Rep; 2017 Aug; 7(1):7155. PubMed ID: 28769093
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the origin of multi-component bulk metallic glasses: Atomic size mismatches and de-mixing.
    Zhang K; Dice B; Liu Y; Schroers J; Shattuck MD; O'Hern CS
    J Chem Phys; 2015 Aug; 143(5):054501. PubMed ID: 26254655
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overcoming the Time Limitation in Molecular Dynamics Simulation of Crystal Nucleation: A Persistent-Embryo Approach.
    Sun Y; Song H; Zhang F; Yang L; Ye Z; Mendelev MI; Wang CZ; Ho KM
    Phys Rev Lett; 2018 Feb; 120(8):085703. PubMed ID: 29543013
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electromagnetic vibration process for producing bulk metallic glasses.
    Tamura T; Amiya K; Rachmat RS; Mizutani Y; Miwa K
    Nat Mater; 2005 Apr; 4(4):289-92. PubMed ID: 15750599
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Machine Learning Approach for Prediction and Understanding of Glass-Forming Ability.
    Sun YT; Bai HY; Li MZ; Wang WH
    J Phys Chem Lett; 2017 Jul; 8(14):3434-3439. PubMed ID: 28697303
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of favored and optimized compositions for Cu-Zr-Ni metallic glasses by interatomic potential.
    Cui YY; Li JH; Dai Y; Liu BX
    J Phys Chem B; 2011 Apr; 115(16):4703-8. PubMed ID: 21473611
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of shear on the liquid-liquid transition and crystallization of the undercooled Zr
    Gallino I; Wadhwa P; Busch R
    J Phys Condens Matter; 2021 Sep; 33(47):. PubMed ID: 34464948
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses.
    Liu Y; Padmanabhan J; Cheung B; Liu J; Chen Z; Scanley BE; Wesolowski D; Pressley M; Broadbridge CC; Altman S; Schwarz UD; Kyriakides TR; Schroers J
    Sci Rep; 2016 May; 6():26950. PubMed ID: 27230692
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Compositional landscape for glass formation in metal alloys.
    Na JH; Demetriou MD; Floyd M; Hoff A; Garrett GR; Johnson WL
    Proc Natl Acad Sci U S A; 2014 Jun; 111(25):9031-6. PubMed ID: 24927600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic analysis of homogeneous droplet nucleation using large-scale molecular dynamics simulations.
    Ayuba S; Suh D; Nomura K; Ebisuzaki T; Yasuoka K
    J Chem Phys; 2018 Jul; 149(4):044504. PubMed ID: 30068205
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glass-Forming Ability, Mechanical Properties, and Energetic Characteristics of ZrCuNiAlNbHfY Bulk Metallic Glasses.
    Yu X; Li J; Zhang K; Zhang H; Wang H; Fang Y; Ma Y; Wang Z; Zhang X; Gai X
    Materials (Basel); 2024 Jun; 17(13):. PubMed ID: 38998219
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The atomic-scale mechanism for the enhanced glass-forming-ability of a Cu-Zr based bulk metallic glass with minor element additions.
    Wang Q; Liu CT; Yang Y; Liu JB; Dong YD; Lu J
    Sci Rep; 2014 Apr; 4():4648. PubMed ID: 24721927
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cooling rate and size effects on the medium-range structure of multicomponent oxide glasses simulated by molecular dynamics.
    Tilocca A
    J Chem Phys; 2013 Sep; 139(11):114501. PubMed ID: 24070291
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combinatorial measurement of critical cooling rates in aluminum-base metallic glass forming alloys.
    Liu N; Ma T; Liao C; Liu G; Mota RMO; Liu J; Sohn S; Kube S; Zhao S; Singer JP; Schroers J
    Sci Rep; 2021 Feb; 11(1):3903. PubMed ID: 33594154
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal genes in a marginal glass-forming system of Ni
    Wen TQ; Tang L; Sun Y; Ho KM; Wang CZ; Wang N
    Phys Chem Chem Phys; 2017 Nov; 19(45):30429-30438. PubMed ID: 29104995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal rejuvenation in metallic glasses.
    Saida J; Yamada R; Wakeda M; Ogata S
    Sci Technol Adv Mater; 2017; 18(1):152-162. PubMed ID: 28458739
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Atomic-scale heterogeneity of a multicomponent bulk metallic glass with excellent glass forming ability.
    Fujita T; Konno K; Zhang W; Kumar V; Matsuura M; Inoue A; Sakurai T; Chen MW
    Phys Rev Lett; 2009 Aug; 103(7):075502. PubMed ID: 19792657
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulation of the Continuous Casting and Cooling Behavior of Metallic Glasses.
    Pei Z; Ju D
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.