These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28775719)

  • 1. Temporal Microbial Community Dynamics in Microbial Electrolysis Cells - Influence of Acetate and Propionate Concentration.
    Hari AR; Venkidusamy K; Katuri KP; Bagchi S; Saikaly PE
    Front Microbiol; 2017; 8():1371. PubMed ID: 28775719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple paths of electron flow to current in microbial electrolysis cells fed with low and high concentrations of propionate.
    Hari AR; Katuri KP; Gorron E; Logan BE; Saikaly PE
    Appl Microbiol Biotechnol; 2016 Jul; 100(13):5999-6011. PubMed ID: 26936773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of volatile fatty acids on microbial electrolysis cell performance.
    Yang N; Hafez H; Nakhla G
    Bioresour Technol; 2015 Oct; 193():449-55. PubMed ID: 26159302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of different substrates on microbial electrolysis cell (MEC) anodic membrane: biodiversity and hydrogen production performance.
    Shao Q; Li J; Yang S; Sun H
    Water Sci Technol; 2019 Mar; 79(6):1123-1133. PubMed ID: 31070592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance and community structure dynamics of microbial electrolysis cells operated on multiple complex feedstocks.
    Satinover SJ; Rodriguez M; Campa MF; Hazen TC; Borole AP
    Biotechnol Biofuels; 2020; 13():169. PubMed ID: 33062055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shift of biofilm and suspended bacterial communities with changes in anode potential in a microbial electrolysis cell treating primary sludge.
    Zakaria BS; Lin L; Dhar BR
    Sci Total Environ; 2019 Nov; 689():691-699. PubMed ID: 31280150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Set anode potentials affect the electron fluxes and microbial community structure in propionate-fed microbial electrolysis cells.
    Hari AR; Katuri KP; Logan BE; Saikaly PE
    Sci Rep; 2016 Dec; 6():38690. PubMed ID: 27934925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in Glucose Fermentation Pathways as a Response to the Free Ammonia Concentration in Microbial Electrolysis Cells.
    Mahmoud M; Torres CI; Rittmann BE
    Environ Sci Technol; 2017 Nov; 51(22):13461-13470. PubMed ID: 29039192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial anodic consortia fed with fermentable substrates in microbial electrolysis cells: Significance of microbial structures.
    Flayac C; Trably E; Bernet N
    Bioelectrochemistry; 2018 Oct; 123():219-226. PubMed ID: 29874632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge.
    Lu L; Xing D; Ren N
    Water Res; 2012 May; 46(7):2425-34. PubMed ID: 22374298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geochip-based functional gene analysis of anodophilic communities in microbial electrolysis cells under different operational modes.
    Liu W; Wang A; Cheng S; Logan BE; Yu H; Deng Y; Nostrand JD; Wu L; He Z; Zhou J
    Environ Sci Technol; 2010 Oct; 44(19):7729-35. PubMed ID: 20831218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple syntrophic interactions drive biohythane production from waste sludge in microbial electrolysis cells.
    Liu Q; Ren ZJ; Huang C; Liu B; Ren N; Xing D
    Biotechnol Biofuels; 2016; 9():162. PubMed ID: 27489567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ammonia on electrochemical active biofilm in microbial electrolysis cells for synthetic swine wastewater treatment.
    Wang N; Feng Y; Li Y; Zhang L; Liu J; Li N; He W
    Water Res; 2022 Jul; 219():118570. PubMed ID: 35597221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competition of two highly specialized and efficient acetoclastic electroactive bacteria for acetate in biofilm anode of microbial electrolysis cell.
    Sapireddy V; Katuri KP; Muhammad A; Saikaly PE
    NPJ Biofilms Microbiomes; 2021 May; 7(1):47. PubMed ID: 34059681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells.
    Sun R; Zhou A; Jia J; Liang Q; Liu Q; Xing D; Ren N
    Bioresour Technol; 2015 Jan; 175():68-74. PubMed ID: 25459805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of anode acclimation strategy on microbial electrolysis cell treating hydrogen fermentation effluent.
    Li X; Zhang R; Qian Y; Angelidaki I; Zhang Y
    Bioresour Technol; 2017 Jul; 236():37-43. PubMed ID: 28390275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters.
    Kiely PD; Cusick R; Call DF; Selembo PA; Regan JM; Logan BE
    Bioresour Technol; 2011 Jan; 102(1):388-94. PubMed ID: 20554197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of electrical current production in microbial electrolysis cells fed with animal rendering wastewater.
    Xie A; Deaver JA; Miller E; Popat SC
    Chemosphere; 2021 Dec; 285():131547. PubMed ID: 34329127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Damage of anodic biofilms by high salinity deteriorates PAHs degradation in single-chamber microbial electrolysis cell reactor.
    Ding P; Wu P; Jie Z; Cui MH; Liu H
    Sci Total Environ; 2021 Jul; 777():145752. PubMed ID: 33684746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.