These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 28775728)

  • 41. Secondary Metabolites Coordinately Protect Grapes from Excessive Light and Sunburn Damage during Development.
    Gambetta JM; Romat V; Schmidtke LM; Holzapfel BP
    Biomolecules; 2021 Dec; 12(1):. PubMed ID: 35053190
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Iso-Seq Allows Genome-Independent Transcriptome Profiling of Grape Berry Development.
    Minio A; Massonnet M; Figueroa-Balderas R; Vondras AM; Blanco-Ulate B; Cantu D
    G3 (Bethesda); 2019 Mar; 9(3):755-767. PubMed ID: 30642874
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Swift metabolite changes and leaf shedding are milestones in the acclimation process of grapevine under prolonged water stress.
    Degu A; Hochberg U; Wong DCJ; Alberti G; Lazarovitch N; Peterlunger E; Castellarin SD; Herrera JC; Fait A
    BMC Plant Biol; 2019 Feb; 19(1):69. PubMed ID: 30744556
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In vivo assessing flavonols in white grape berries (Vitis vinifera L. cv. Pinot Blanc) of different degrees of ripeness using chlorophyll fluorescence imaging.
    Lenk S; Buschmann C; Pfündel EE
    Funct Plant Biol; 2008 Jan; 34(12):1092-1104. PubMed ID: 32689439
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparative Transcriptomic Analysis of Grape Berry in Response to Root Restriction during Developmental Stages.
    Leng F; Lin Q; Wu D; Wang S; Wang D; Sun C
    Molecules; 2016 Oct; 21(11):. PubMed ID: 27801843
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Involvement of pectin methyl-esterase during the ripening of grape berries: partial cDNA isolation, transcript expression and changes in the degree of methyl-esterification of cell wall pectins.
    Barnavon L; Doco T; Terrier N; Ageorges A; Romieu C; Pellerin P
    Phytochemistry; 2001 Nov; 58(5):693-701. PubMed ID: 11672733
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism.
    Martínez-Esteso MJ; Sellés-Marchart S; Lijavetzky D; Pedreño MA; Bru-Martínez R
    J Exp Bot; 2011 May; 62(8):2521-69. PubMed ID: 21576399
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sugar accumulation in grape berries. Cloning of two putative vacuolar invertase cDNAs and their expression in grapevine tissues.
    Davies C; Robinson SP
    Plant Physiol; 1996 May; 111(1):275-83. PubMed ID: 8685267
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Colour variation in red grapevines (Vitis vinifera L.): genomic organisation, expression of flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin.
    Castellarin SD; Di Gaspero G; Marconi R; Nonis A; Peterlunger E; Paillard S; Adam-Blondon AF; Testolin R
    BMC Genomics; 2006 Jan; 7():12. PubMed ID: 16433923
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Distinct Metabolic Signals Underlie Clone by Environment Interplay in "Nebbiolo" Grapes Over Ripening.
    Pagliarani C; Boccacci P; Chitarra W; Cosentino E; Sandri M; Perrone I; Mori A; Cuozzo D; Nerva L; Rossato M; Zuccolotto P; Pezzotti M; Delledonne M; Mannini F; Gribaudo I; Gambino G
    Front Plant Sci; 2019; 10():1575. PubMed ID: 31867031
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A proteomic analysis shows the stimulation of light reactions and inhibition of the Calvin cycle in the skin chloroplasts of ripe red grape berries.
    Teixeira A; Noronha H; Sebastiana M; Fortes AM; Gerós H
    Front Plant Sci; 2022; 13():1014532. PubMed ID: 36388544
    [TBL] [Abstract][Full Text] [Related]  

  • 52. ABA and GA
    Murcia G; Fontana A; Pontin M; Baraldi R; Bertazza G; Piccoli PN
    Phytochemistry; 2017 Mar; 135():34-52. PubMed ID: 27998613
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fruit-localized photoreceptors increase phenolic compounds in berry skins of field-grown Vitis vinifera L. cv. Malbec.
    González CV; Fanzone ML; Cortés LE; Bottini R; Lijavetzky DC; Ballaré CL; Boccalandro HE
    Phytochemistry; 2015 Feb; 110():46-57. PubMed ID: 25514818
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plant and fungus transcriptomic data from grapevine berries undergoing artificially-induced noble rot caused by
    Lovato A; Zenoni S; Tornielli GB; Colombo T; Vandelle E; Polverari A
    Data Brief; 2019 Aug; 25():104150. PubMed ID: 31304217
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Polyphenolic responses of grapevine berries to light, temperature, oxidative stress, abscisic acid and jasmonic acid show specific developmental-dependent degrees of metabolic resilience to perturbation.
    Degu A; Ayenew B; Cramer GR; Fait A
    Food Chem; 2016 Dec; 212():828-36. PubMed ID: 27374601
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Expression Analyses in the Rachis Hint towards Major Cell Wall Modifications in Grape Clusters Showing Berry Shrivel Symptoms.
    Savoi S; Supapvanich S; Hildebrand H; Stralis-Pavese N; Forneck A; Kreil DP; Griesser M
    Plants (Basel); 2022 Aug; 11(16):. PubMed ID: 36015462
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Treatment of Grape Berries, a Nonclimacteric Fruit with a Synthetic Auxin, Retards Ripening and Alters the Expression of Developmentally Regulated Genes.
    Davies C; Boss PK; Robinson SP
    Plant Physiol; 1997 Nov; 115(3):1155-1161. PubMed ID: 12223864
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparative RNA-Seq profiling of berry development between table grape 'Kyoho' and its early-ripening mutant 'Fengzao'.
    Guo DL; Xi FF; Yu YH; Zhang XY; Zhang GH; Zhong GY
    BMC Genomics; 2016 Oct; 17(1):795. PubMed ID: 27729006
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A rapid qualitative and quantitative evaluation of grape berries at various stages of development using Fourier-transform infrared spectroscopy and multivariate data analysis.
    Musingarabwi DM; Nieuwoudt HH; Young PR; Eyéghè-Bickong HA; Vivier MA
    Food Chem; 2016 Jan; 190():253-262. PubMed ID: 26212968
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Flooding Responses on Grapevine: A Physiological, Transcriptional, and Metabolic Perspective.
    Ruperti B; Botton A; Populin F; Eccher G; Brilli M; Quaggiotti S; Trevisan S; Cainelli N; Guarracino P; Schievano E; Meggio F
    Front Plant Sci; 2019; 10():339. PubMed ID: 30972087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.