These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 28775728)

  • 61. Polyphenolic responses of grapevine berries to light, temperature, oxidative stress, abscisic acid and jasmonic acid show specific developmental-dependent degrees of metabolic resilience to perturbation.
    Degu A; Ayenew B; Cramer GR; Fait A
    Food Chem; 2016 Dec; 212():828-36. PubMed ID: 27374601
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Timing of ripening initiation in grape berries and its relationship to seed content and pericarp auxin levels.
    Gouthu S; Deluc LG
    BMC Plant Biol; 2015 Feb; 15():46. PubMed ID: 25848949
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Expression Analyses in the Rachis Hint towards Major Cell Wall Modifications in Grape Clusters Showing Berry Shrivel Symptoms.
    Savoi S; Supapvanich S; Hildebrand H; Stralis-Pavese N; Forneck A; Kreil DP; Griesser M
    Plants (Basel); 2022 Aug; 11(16):. PubMed ID: 36015462
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Treatment of Grape Berries, a Nonclimacteric Fruit with a Synthetic Auxin, Retards Ripening and Alters the Expression of Developmentally Regulated Genes.
    Davies C; Boss PK; Robinson SP
    Plant Physiol; 1997 Nov; 115(3):1155-1161. PubMed ID: 12223864
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Comparative RNA-Seq profiling of berry development between table grape 'Kyoho' and its early-ripening mutant 'Fengzao'.
    Guo DL; Xi FF; Yu YH; Zhang XY; Zhang GH; Zhong GY
    BMC Genomics; 2016 Oct; 17(1):795. PubMed ID: 27729006
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A rapid qualitative and quantitative evaluation of grape berries at various stages of development using Fourier-transform infrared spectroscopy and multivariate data analysis.
    Musingarabwi DM; Nieuwoudt HH; Young PR; Eyéghè-Bickong HA; Vivier MA
    Food Chem; 2016 Jan; 190():253-262. PubMed ID: 26212968
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Flooding Responses on Grapevine: A Physiological, Transcriptional, and Metabolic Perspective.
    Ruperti B; Botton A; Populin F; Eccher G; Brilli M; Quaggiotti S; Trevisan S; Cainelli N; Guarracino P; Schievano E; Meggio F
    Front Plant Sci; 2019; 10():339. PubMed ID: 30972087
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fruit ripening in Vitis vinifera: light intensity before and not during ripening determines the concentration of 2-methoxy-3-isobutylpyrazine in Cabernet Sauvignon berries.
    Koch A; Ebeler SE; Williams LE; Matthews MA
    Physiol Plant; 2012 Jun; 145(2):275-85. PubMed ID: 22224579
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Five omic technologies are concordant in differentiating the biochemical characteristics of the berries of five grapevine (Vitis vinifera L.) cultivars.
    Ghan R; Van Sluyter SC; Hochberg U; Degu A; Hopper DW; Tillet RL; Schlauch KA; Haynes PA; Fait A; Cramer GR
    BMC Genomics; 2015 Nov; 16():946. PubMed ID: 26573226
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Temperature desynchronizes sugar and organic acid metabolism in ripening grapevine fruits and remodels their transcriptome.
    Rienth M; Torregrosa L; Sarah G; Ardisson M; Brillouet JM; Romieu C
    BMC Plant Biol; 2016 Jul; 16(1):164. PubMed ID: 27439426
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Transcriptome and metabolites analysis of water-stressed grape berries at different growth stages.
    Ma W; Lu S; Li W; Nai G; Ma Z; Li Y; Chen B; Mao J
    Physiol Plant; 2023; 175(3):e13910. PubMed ID: 37042463
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Rapid dehydration of grape berries dampens the post-ripening transcriptomic program and the metabolite profile evolution.
    Zenoni S; Amato A; D'Incà E; Guzzo F; Tornielli GB
    Hortic Res; 2020; 7():141. PubMed ID: 32922813
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Transcriptomic and Metabolomic Networks in the Grape Berry Illustrate That it Takes More Than Flavonoids to Fight Against Ultraviolet Radiation.
    Matus JT
    Front Plant Sci; 2016; 7():1337. PubMed ID: 27625679
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Transcriptomic and Metabolomic Basis of Short- and Long-Term Post-Harvest UV-C Application in Regulating Grape Berry Quality Development.
    Zhang K; Li W; Ju Y; Wang X; Sun X; Fang Y; Chen K
    Foods; 2021 Mar; 10(3):. PubMed ID: 33809507
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Postharvest Dehydration Temperature Modulates the Transcriptomic Programme and Flavonoid Profile of Grape Berries.
    Chen K; Sun J; Li Z; Zhang J; Li Z; Chen L; Li W; Fang Y; Zhang K
    Foods; 2021 Mar; 10(3):. PubMed ID: 33807052
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Parasite contamination of berries: Risk, occurrence, and approaches for mitigation.
    Tefera T; Tysnes KR; Utaaker KS; Robertson LJ
    Food Waterborne Parasitol; 2018 Mar; 10():23-38. PubMed ID: 32095598
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Missing Links in Predicting Berry Sunburn in Future Vineyards.
    Bahr C; Schmidt D; Kahlen K
    Front Plant Sci; 2021; 12():715906. PubMed ID: 34712249
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Evaluation of Salt Stress-Induced Changes in Polyamine, Amino Acid, and Phytoalexin Profiles in Mature Fruits of Grapevine Cultivars Grown in Tunisian Oases.
    Habib A; Ben Maachia S; Namsi A; Harbi Ben Slimane M; Jeandet P; Aziz A
    Plants (Basel); 2023 Nov; 12(23):. PubMed ID: 38068666
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Fruit Photosynthesis: More to Know about Where, How and Why.
    Garrido A; Conde A; Serôdio J; De Vos RCH; Cunha A
    Plants (Basel); 2023 Jun; 12(13):. PubMed ID: 37446953
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Secondary metabolites in grapevine: crosstalk of transcriptional, metabolic and hormonal signals controlling stress defence responses in berries and vegetative organs.
    Ferrandino A; Pagliarani C; Pérez-Álvarez EP
    Front Plant Sci; 2023; 14():1124298. PubMed ID: 37404528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.