These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 28775933)

  • 1. Microbial transformation of artemisinin by
    Yu H; Zhu B; Zhan Y
    Bioresour Bioprocess; 2017; 4(1):33. PubMed ID: 28775933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotransformation of artemisinin by Aspergillus niger.
    Zhan Y; Liu H; Wu Y; Wei P; Chen Z; Williamson JS
    Appl Microbiol Biotechnol; 2015 Apr; 99(8):3443-6. PubMed ID: 25712678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined chemical transformation and biological transformation of artemisinin: A facile approach to diverse artemisinin derivatives.
    Gao X; Bai Y; Sun P; Gao H; Yang L; Zhang D; Zhao Y; Ma Y
    Front Chem; 2022; 10():1089290. PubMed ID: 36760520
    [No Abstract]   [Full Text] [Related]  

  • 4. Biotransformation of artemisinin to a novel derivative via ring rearrangement by Aspergillus niger.
    Luo J; Mobley R; Woodfine S; Drijfhout F; Horrocks P; Ren XD; Li WW
    Appl Microbiol Biotechnol; 2022 Apr; 106(7):2433-2444. PubMed ID: 35355096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Microbial transformation of artemisinin and its derivatives].
    Gao XN; Kang JJ; Sun P; Zhao YF; Zhang D; Yang L; Ma Y; Gao HM
    Zhongguo Zhong Yao Za Zhi; 2023 Jun; 48(11):2876-2895. PubMed ID: 37381950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotransformation of Artemisinin to 14-Hydroxydeoxyartemisinin: C-14 Hydroxylation by Aspergillus flavus.
    Ponnapalli MG; Sura MB; Sudhakar R; Govindarajalu G; Sijwali PS
    J Agric Food Chem; 2018 Oct; 66(40):10490-10495. PubMed ID: 30230327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oral Bioavailability Comparison of Artemisinin, Deoxyartemisinin, and 10-Deoxoartemisinin Based on Computer Simulations and Pharmacokinetics in Rats.
    Fu C; Shi H; Chen H; Zhang K; Wang M; Qiu F
    ACS Omega; 2021 Jan; 6(1):889-899. PubMed ID: 33458540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel dihydroxylated derivative of artemisinin from microbial transformation.
    Zhan Y; Wu Y; Xu F; Bai Y; Guan Y; Williamson JS; Liu B
    Fitoterapia; 2017 Jul; 120():93-97. PubMed ID: 28576722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial metabolism of artemisinin by Mucor polymorphosporus and Aspergillus niger.
    Zhan JX; Zhang YX; Guo HZ; Han J; Ning LL; Guo DA
    J Nat Prod; 2002 Nov; 65(11):1693-5. PubMed ID: 12444705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New antifungal compounds from Aspergillus terreus isolated from desert soil.
    Awaad AS; Nabilah AJ; Zain ME
    Phytother Res; 2012 Dec; 26(12):1872-7. PubMed ID: 22422648
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Al-Shibli H; Dobretsov S; Al-Nabhani A; Maharachchikumbura SSN; Rethinasamy V; Al-Sadi AM
    PeerJ; 2019; 7():e7884. PubMed ID: 31656698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient tool for random insertional mutagenesis: Agrobacterium tumefaciens-mediated transformation of the filamentous fungus Aspergillus terreus.
    Wang D; He D; Li G; Gao S; Lv H; Shan Q; Wang L
    J Microbiol Methods; 2014 Mar; 98():114-8. PubMed ID: 24462974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformation of Aspergillus terreus with the hygromycin B resistance marker from Escherichia coli.
    Ventura L; Ramón D
    FEMS Microbiol Lett; 1991 Aug; 66(2):189-93. PubMed ID: 1936947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyketides in Aspergillus terreus: biosynthesis pathway discovery and application.
    Yin Y; Cai M; Zhou X; Li Z; Zhang Y
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):7787-98. PubMed ID: 27455860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Luliconazole, an alternative antifungal agent against Aspergillus terreus.
    Zargaran M; Taghipour S; Kiasat N; Aboualigalehdari E; Rezaei-Matehkolaei A; Zarei Mahmoudabadi A; Shamsizadeh F
    J Mycol Med; 2017 Sep; 27(3):351-356. PubMed ID: 28483449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aspergillus terreus spondylodiscitis following an abdominal stab wound: a case report.
    Takagi Y; Yamada H; Ebara H; Hayashi H; Kidani S; Okamoto S; Nakamura Y; Kitano Y; Kagechika K; Demura S; Ueno T; Shimozaki K; Tsuchiya H
    J Med Case Rep; 2019 Jun; 13(1):172. PubMed ID: 31164170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular epidemiology and in-vitro antifungal susceptibility of Aspergillus terreus species complex isolates in Delhi, India: evidence of genetic diversity by amplified fragment length polymorphism and microsatellite typing.
    Kathuria S; Sharma C; Singh PK; Agarwal P; Agarwal K; Hagen F; Meis JF; Chowdhary A
    PLoS One; 2015; 10(3):e0118997. PubMed ID: 25781896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upstream and downstream processing of lovastatin by Aspergillus terreus.
    Mukhtar H; Ijaz SS; Ikram-ul-Haq
    Cell Biochem Biophys; 2014 Sep; 70(1):309-20. PubMed ID: 24671671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mannose and galactose as substrates for production of itaconic acid by Aspergillus terreus.
    Saha BC; Kennedy GJ
    Lett Appl Microbiol; 2017 Dec; 65(6):527-533. PubMed ID: 28977696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New butenolide derivatives from the marine sponge-derived fungus Aspergillus terreus.
    Sun Y; Liu J; Li L; Gong C; Wang S; Yang F; Hua H; Lin H
    Bioorg Med Chem Lett; 2018 Feb; 28(3):315-318. PubMed ID: 29295795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.