These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 28776044)

  • 1. Lignocellulose-Degrading Microbial Communities in Landfill Sites Represent a Repository of Unexplored Biomass-Degrading Diversity.
    Ransom-Jones E; McCarthy AJ; Haldenby S; Doonan J; McDonald JE
    mSphere; 2017; 2(4):. PubMed ID: 28776044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metagenomic and metaproteomic analyses of a corn stover-adapted microbial consortium EMSD5 reveal its taxonomic and enzymatic basis for degrading lignocellulose.
    Zhu N; Yang J; Ji L; Liu J; Yang Y; Yuan H
    Biotechnol Biofuels; 2016; 9():243. PubMed ID: 27833656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-omic Directed Discovery of Cellulosomes, Polysaccharide Utilization Loci, and Lignocellulases from an Enriched Rumen Anaerobic Consortium.
    Tomazetto G; Pimentel AC; Wibberg D; Dixon N; Squina FM
    Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32680862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into microbial plant biomass degradation.
    Svartström O; Alneberg J; Terrapon N; Lombard V; de Bruijn I; Malmsten J; Dalin AM; El Muller E; Shah P; Wilmes P; Henrissat B; Aspeborg H; Andersson AF
    ISME J; 2017 Nov; 11(11):2538-2551. PubMed ID: 28731473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution and diversity of members of the bacterial phylum Fibrobacteres in environments where cellulose degradation occurs.
    Ransom-Jones E; Jones DL; Edwards A; McDonald JE
    Syst Appl Microbiol; 2014 Oct; 37(7):502-9. PubMed ID: 25154048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The microbial ecology of anaerobic cellulose degradation in municipal waste landfill sites: evidence of a role for fibrobacters.
    McDonald JE; Houghton JN; Rooks DJ; Allison HE; McCarthy AJ
    Environ Microbiol; 2012 Apr; 14(4):1077-87. PubMed ID: 22225785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inference of phenotype-defining functional modules of protein families for microbial plant biomass degraders.
    Konietzny SG; Pope PB; Weimann A; McHardy AC
    Biotechnol Biofuels; 2014; 7(1):124. PubMed ID: 25342967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbohydrate Hydrolytic Potential and Redundancy of an Anaerobic Digestion Microbiome Exposed to Acidosis, as Uncovered by Metagenomics.
    Bertucci M; Calusinska M; Goux X; Rouland-Lefèvre C; Untereiner B; Ferrer P; Gerin PA; Delfosse P
    Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31152018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial enrichment and meta-omics analysis identify CAZymes from mangrove sediments with unique properties.
    Paixão DAA; Tomazetto G; Sodré VR; Gonçalves TA; Uchima CA; Büchli F; Alvarez TM; Persinoti GF; da Silva MJ; Bragatto J; Liberato MV; Franco Cairo JPL; Leme AFP; Squina FM
    Enzyme Microb Technol; 2021 Aug; 148():109820. PubMed ID: 34116762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Fibrobacteres: an important phylum of cellulose-degrading bacteria.
    Ransom-Jones E; Jones DL; McCarthy AJ; McDonald JE
    Microb Ecol; 2012 Feb; 63(2):267-81. PubMed ID: 22213055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metagenomic insights into the diversity of carbohydrate-degrading enzymes in the yak fecal microbial community.
    Gong G; Zhou S; Luo R; Gesang Z; Suolang S
    BMC Microbiol; 2020 Oct; 20(1):302. PubMed ID: 33036549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A metagenomic analysis of the camel rumen's microbiome identifies the major microbes responsible for lignocellulose degradation and fermentation.
    Gharechahi J; Salekdeh GH
    Biotechnol Biofuels; 2018; 11():216. PubMed ID: 30083229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of cellulolytic microbial consortium enriched on Napier grass using metagenomic approaches.
    Kanokratana P; Wongwilaiwalin S; Mhuantong W; Tangphatsornruang S; Eurwilaichitr L; Champreda V
    J Biosci Bioeng; 2018 Apr; 125(4):439-447. PubMed ID: 29169786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation.
    Xu B; Xu W; Li J; Dai L; Xiong C; Tang X; Yang Y; Mu Y; Zhou J; Ding J; Wu Q; Huang Z
    BMC Genomics; 2015 Mar; 16(1):174. PubMed ID: 25887697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional characterization of thermotolerant microbial consortium for lignocellulolytic enzymes with central role of Firmicutes in rice straw depolymerization.
    Gavande PV; Basak A; Sen S; Lepcha K; Murmu N; Rai V; Mazumdar D; Saha SP; Das V; Ghosh S
    Sci Rep; 2021 Feb; 11(1):3032. PubMed ID: 33542396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metagenomic Analysis of the Gut Microbiome of the Common Black Slug
    Joynson R; Pritchard L; Osemwekha E; Ferry N
    Front Microbiol; 2017; 8():2181. PubMed ID: 29167663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial carbohydrate active enzyme (CAZyme) genes and diversity from Menagesha Suba natural forest soils of Ethiopia as revealed by shotgun metagenomic sequencing.
    Sime AM; Kifle BA; Woldesemayat AA; Gemeda MT
    BMC Microbiol; 2024 Aug; 24(1):285. PubMed ID: 39090559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional and sequence-based metagenomics to uncover carbohydrate-degrading enzymes from composting samples.
    Santos-Pereira C; Sousa J; Costa ÂMA; Santos AO; Rito T; Soares P; Franco-Duarte R; Silvério SC; Rodrigues LR
    Appl Microbiol Biotechnol; 2023 Sep; 107(17):5379-5401. PubMed ID: 37417976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncovering the Potential of Termite Gut Microbiome for Lignocellulose Bioconversion in Anaerobic Batch Bioreactors.
    Auer L; Lazuka A; Sillam-Dussès D; Miambi E; O'Donohue M; Hernandez-Raquet G
    Front Microbiol; 2017; 8():2623. PubMed ID: 29312279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lignocellulose degradation in Protaetia brevitarsis larvae digestive tract: refining on a tightly designed microbial fermentation production line.
    Wang K; Gao P; Geng L; Liu C; Zhang J; Shu C
    Microbiome; 2022 Jun; 10(1):90. PubMed ID: 35698170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.