These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 28776055)

  • 21. Mechanistic characterization of aerobic alcohol oxidation catalyzed by Pd(OAc)(2)/pyridine including identification of the catalyst resting state and the origin of nonlinear [catalyst] dependence.
    Steinhoff BA; Guzei IA; Stahl SS
    J Am Chem Soc; 2004 Sep; 126(36):11268-78. PubMed ID: 15355108
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism of Copper/Azodicarboxylate-Catalyzed Aerobic Alcohol Oxidation: Evidence for Uncooperative Catalysis.
    McCann SD; Stahl SS
    J Am Chem Soc; 2016 Jan; 138(1):199-206. PubMed ID: 26694091
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Copper/TEMPO-Catalyzed Aerobic Alcohol Oxidation: Mechanistic Assessment of Different Catalyst Systems.
    Hoover JM; Ryland BL; Stahl SS
    ACS Catal; 2013 Nov; 3(11):2599-2605. PubMed ID: 24558634
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selective, catalytic aerobic oxidation of alcohols using CuBr(2) and bifunctional triazine-based ligands containing both a bipyridine and a TEMPO group.
    Lu Z; Ladrak T; Roubeau O; van der Toorn J; Teat SJ; Massera C; Gamez P; Reedijk J
    Dalton Trans; 2009 May; (18):3559-70. PubMed ID: 19381418
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterogeneous solvent-metal-free aerobic oxidation of alcohol under ambient conditions catalyzed by TEMPO-functionalized porous poly(ionic liquid)s.
    She Y; Chen X; Wang M; Liu A; Wang X; Gao D; Hu K; Hu M
    RSC Adv; 2024 Jun; 14(28):20199-20209. PubMed ID: 38919279
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanistic insight into alcohol oxidation mediated by an efficient green Cu(II)-bipy catalyst with and without TEMPO by density functional methods.
    Cheng L; Wang J; Wang M; Wu Z
    Dalton Trans; 2010 Jun; 39(22):5377-87. PubMed ID: 20454740
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Copper-Catalyzed Aerobic Oxidations of Organic Molecules: Pathways for Two-Electron Oxidation with a Four-Electron Oxidant and a One-Electron Redox-Active Catalyst.
    McCann SD; Stahl SS
    Acc Chem Res; 2015 Jun; 48(6):1756-66. PubMed ID: 26020118
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Green, catalytic oxidation of alcohols in water.
    ten Brink GJ ; Arends IW; Sheldon RA
    Science; 2000 Mar; 287(5458):1636-9. PubMed ID: 10698735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient NO equivalent for activation of molecular oxygen and its applications in transition-metal-free catalytic aerobic alcohol oxidation.
    Xie Y; Mo W; Xu D; Shen Z; Sun N; Hu B; Hu X
    J Org Chem; 2007 May; 72(11):4288-91. PubMed ID: 17447820
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Copper(II)-catalyzed aerobic oxidation of primary alcohols to aldehydes in ionic liquid [bmpy]PF6.
    Jiang N; Ragauskas AJ
    Org Lett; 2005 Aug; 7(17):3689-92. PubMed ID: 16092851
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Homogeneous palladium catalyst suppressing Pd black formation in air oxidation of alcohols.
    Iwasawa T; Tokunaga M; Obora Y; Tsuji Y
    J Am Chem Soc; 2004 Jun; 126(21):6554-5. PubMed ID: 15161274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aerobic oxidation of primary alcohols catalyzed by copper complexes of 1,10-phenanthroline-derived ligands.
    Das O; Paine TK
    Dalton Trans; 2012 Oct; 41(37):11476-81. PubMed ID: 22892834
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simple preparation and application of TEMPO-coated Fe(3)O(4) superparamagnetic nanoparticles for selective oxidation of alcohols.
    Tucker-Schwartz AK; Garrell RL
    Chemistry; 2010 Nov; 16(42):12718-26. PubMed ID: 20853280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular Engineering of Trifunctional Supported Catalysts for the Aerobic Oxidation of Alcohols.
    Fernandes AE; Riant O; Jensen KF; Jonas AM
    Angew Chem Int Ed Engl; 2016 Sep; 55(37):11044-8. PubMed ID: 27430481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and characterization of copper(II) 4'-phenyl-terpyridine compounds and catalytic application for aerobic oxidation of benzylic alcohols.
    Ma Z; Wei L; Alegria EC; Martins LM; Guedes da Silva MF; Pombeiro AJ
    Dalton Trans; 2014 Mar; 43(10):4048-58. PubMed ID: 24452440
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Ru-Hbpp water oxidation catalyst.
    Bozoglian F; Romain S; Ertem MZ; Todorova TK; Sens C; Mola J; Rodríguez M; Romero I; Benet-Buchholz J; Fontrodona X; Cramer CJ; Gagliardi L; Llobet A
    J Am Chem Soc; 2009 Oct; 131(42):15176-87. PubMed ID: 19791789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient and selective Cu/nitroxyl-catalyzed methods for aerobic oxidative lactonization of diols.
    Xie X; Stahl SS
    J Am Chem Soc; 2015 Mar; 137(11):3767-70. PubMed ID: 25751494
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transition-metal-free: a highly efficient catalytic aerobic alcohol oxidation process.
    Liu R; Liang X; Dong C; Hu X
    J Am Chem Soc; 2004 Apr; 126(13):4112-3. PubMed ID: 15053593
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly efficient aerobic oxidation of alcohols by using less-hindered nitroxyl-radical/copper catalysis: optimum catalyst combinations and their substrate scope.
    Sasano Y; Kogure N; Nishiyama T; Nagasawa S; Iwabuchi Y
    Chem Asian J; 2015 Apr; 10(4):1004-9. PubMed ID: 25620279
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel thermally stable hydroperoxo-copper(II) complex in a Cu(N2O2) chromophore of a potential N4O2 donor Schiff base ligand: synthesis, structure and catalytic studies.
    Biswas S; Dutta A; Debnath M; Dolai M; Das KK; Ali M
    Dalton Trans; 2013 Sep; 42(36):13210-9. PubMed ID: 23884097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.