BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 28776261)

  • 1. Roles of Na
    Lingle CJ; Martinez-Espinosa PL; Guarina L; Carbone E
    Pflugers Arch; 2018 Jan; 470(1):39-52. PubMed ID: 28776261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced availability of voltage-gated sodium channels by depolarization or blockade by tetrodotoxin boosts burst firing and catecholamine release in mouse chromaffin cells.
    Vandael DH; Ottaviani MM; Legros C; Lefort C; Guérineau NC; Allio A; Carabelli V; Carbone E
    J Physiol; 2015 Feb; 593(4):905-27. PubMed ID: 25620605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low pH
    Guarina L; Vandael DH; Carabelli V; Carbone E
    J Physiol; 2017 Apr; 595(8):2587-2609. PubMed ID: 28026020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual action of leptin on rest-firing and stimulated catecholamine release via phosphoinositide 3-kinase-driven BK channel up-regulation in mouse chromaffin cells.
    Gavello D; Vandael D; Gosso S; Carbone E; Carabelli V
    J Physiol; 2015 Nov; 593(22):4835-53. PubMed ID: 26282459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired chromaffin cell excitability and exocytosis in autistic Timothy syndrome TS2-neo mouse rescued by L-type calcium channel blockers.
    Calorio C; Gavello D; Guarina L; Salio C; Sassoè-Pognetto M; Riganti C; Bianchi FT; Hofer NT; Tuluc P; Obermair GJ; Defilippi P; Balzac F; Turco E; Bett GC; Rasmusson RL; Carbone E
    J Physiol; 2019 Mar; 597(6):1705-1733. PubMed ID: 30629744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cav1.3 Channels as Key Regulators of Neuron-Like Firings and Catecholamine Release in Chromaffin Cells.
    Vandael DH; Marcantoni A; Carbone E
    Curr Mol Pharmacol; 2015; 8(2):149-61. PubMed ID: 25966692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscarinic receptors in adrenal chromaffin cells: physiological role and regulation of ion channels.
    Inoue M; Matsuoka H; Harada K; Kao LS
    Pflugers Arch; 2018 Jan; 470(1):29-38. PubMed ID: 28762161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sodium background conductance controls the spiking pattern of mouse adrenal chromaffin cells in situ.
    Milman A; Ventéo S; Bossu JL; Fontanaud P; Monteil A; Lory P; Guérineau NC
    J Physiol; 2021 Mar; 599(6):1855-1883. PubMed ID: 33450050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different contributions of calcium channel subtypes to electrical excitability of chromaffin cells in rat adrenal slices.
    Albiñana E; Segura-Chama P; Baraibar AM; Hernández-Cruz A; Hernández-Guijo JM
    J Neurochem; 2015 May; 133(4):511-21. PubMed ID: 25683177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knockout of the BK β2 subunit abolishes inactivation of BK currents in mouse adrenal chromaffin cells and results in slow-wave burst activity.
    Martinez-Espinosa PL; Yang C; Gonzalez-Perez V; Xia XM; Lingle CJ
    J Gen Physiol; 2014 Oct; 144(4):275-95. PubMed ID: 25267913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cav1.3 and Cav1.2 channels of adrenal chromaffin cells: emerging views on cAMP/cGMP-mediated phosphorylation and role in pacemaking.
    Vandael DH; Mahapatra S; Calorio C; Marcantoni A; Carbone E
    Biochim Biophys Acta; 2013 Jul; 1828(7):1608-18. PubMed ID: 23159773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A physiological view of the central and peripheral mechanisms that regulate the release of catecholamines at the adrenal medulla.
    de Diego AM; Gandía L; García AG
    Acta Physiol (Oxf); 2008 Feb; 192(2):287-301. PubMed ID: 18005392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GABA
    Alejandre-García T; Peña-Del Castillo JG; Hernández-Cruz A
    Pflugers Arch; 2018 Jan; 470(1):67-77. PubMed ID: 29101464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forty years of the adrenal chromaffin cell through ISCCB meetings around the world.
    Maneu V; Borges R; Gandía L; García AG
    Pflugers Arch; 2023 Jun; 475(6):667-690. PubMed ID: 36884064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca(V)1.3-driven SK channel activation regulates pacemaking and spike frequency adaptation in mouse chromaffin cells.
    Vandael DH; Zuccotti A; Striessnig J; Carbone E
    J Neurosci; 2012 Nov; 32(46):16345-59. PubMed ID: 23152617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CaV1.3 as pacemaker channels in adrenal chromaffin cells: specific role on exo- and endocytosis?
    Comunanza V; Marcantoni A; Vandael DH; Mahapatra S; Gavello D; Carabelli V; Carbone E
    Channels (Austin); 2010; 4(6):440-6. PubMed ID: 21084859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential regulation of action potentials by inactivating and noninactivating BK channels in rat adrenal chromaffin cells.
    Sun L; Xiong Y; Zeng X; Wu Y; Pan N; Lingle CJ; Qu A; Ding J
    Biophys J; 2009 Oct; 97(7):1832-42. PubMed ID: 19804713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of spontaneous intracellular Ca²⁺ fluctuations and spontaneous cholinergic transmission in rat chromaffin cells in situ by endogenous GABA acting on GABAA receptors.
    Tzitzitlini AG; Pedro SC; Martha PA; Rodolfo DL; Arturo HC
    Pflugers Arch; 2016 Feb; 468(2):351-65. PubMed ID: 26490458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage inactivation of Ca2+ entry and secretion associated with N- and P/Q-type but not L-type Ca2+ channels of bovine chromaffin cells.
    Villarroya M; Olivares R; Ruíz A; Cano-Abad MF; de Pascual R; Lomax RB; López MG; Mayorgas I; Gandía L; García AG
    J Physiol; 1999 Apr; 516 ( Pt 2)(Pt 2):421-32. PubMed ID: 10087342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two firing modes and well-resolved Na
    Marcantoni A; Chiantia G; Tomagra G; Hidisoglu E; Franchino C; Carabelli V; Carbone E
    Pflugers Arch; 2023 Feb; 475(2):181-202. PubMed ID: 36260174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.