These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 2877687)

  • 21. Investigation of the active site of the cyanogenic beta-D-glucosidase (linamarase) from Manihot esculenta Crantz (cassava). I. Evidence for an essential carboxylate and a reactive histidine residue in a single catalytic center.
    Keresztessy Z; Kiss L; Hughes MA
    Arch Biochem Biophys; 1994 Oct; 314(1):142-52. PubMed ID: 7944386
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modification of pig kidney diamine oxidase with ethoxyformic anhydride and rose bengal: evidence for essential histidyl residue at the active site.
    Shah MA; Ali R
    Biochem Mol Biol Int; 1994 May; 33(1):9-19. PubMed ID: 8081216
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chlorination of an active site tyrosyl residue in D-amino acid oxidase by N-chloro-D-leucine.
    Rudie NG; Porter DJ; Bright HJ
    J Biol Chem; 1980 Jan; 255(2):498-508. PubMed ID: 6101327
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biochemical and physical characterization of the active FAD-containing form of nitroalkane oxidase from Fusarium oxysporum.
    Gadda G; Fitzpatrick PF
    Biochemistry; 1998 Apr; 37(17):6154-64. PubMed ID: 9558355
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modification of pig liver dimeric dihydrodiol dehydrogenase with diethylpyrocarbonate and by rose bengal-sensitized photooxidation: evidence for an active-site histidine residue.
    Shinoda M; Hara A; Nakayama T; Deyashiki Y; Sawada H
    J Biochem; 1992 Dec; 112(6):834-9. PubMed ID: 1295893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improvement in thermal stability and substrate binding of pig kidney D-amino acid oxidase by chemical modification.
    Bakke M; Kajiyama N
    Appl Biochem Biotechnol; 2004 Mar; 112(3):123-31. PubMed ID: 15007180
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temperature-induced changes in the coenzyme environment of D-amino acid oxidase revealed by the multiple decays of FAD fluorescence.
    Tanaka F; Tamai N; Yamazaki I; Nakashima N; Yoshihara K
    Biophys J; 1989 Nov; 56(5):901-9. PubMed ID: 2574999
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cooperative binding of coenzyme in D-amino acid oxidase.
    Tanaka F; Yagi K
    Biochemistry; 1979 Apr; 18(8):1531-6. PubMed ID: 34428
    [No Abstract]   [Full Text] [Related]  

  • 29. Exchange of free and bound coenzyme of flavin enzymes studied with [14C]FAD.
    Okuda J; Nagamine J; Yagi K
    Biochim Biophys Acta; 1979 Feb; 566(2):245-52. PubMed ID: 33712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 13C-NMR studies on the reaction intermediates of porcine kidney D-amino acid oxidase reconstituted with 13C-enriched flavin adenine dinucleotide.
    Miura R; Miyake Y
    J Biochem; 1987 Dec; 102(6):1345-54. PubMed ID: 2896189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structure of D-amino acid oxidase: a case of active site mirror-image convergent evolution with flavocytochrome b2.
    Mattevi A; Vanoni MA; Todone F; Rizzi M; Teplyakov A; Coda A; Bolognesi M; Curti B
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):7496-501. PubMed ID: 8755502
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of the histidine residue in Escherichia coli isocitrate lyase that reacts with diethylpyrocarbonate.
    Rua J; Robertson AG; Nimmo HG
    Biochim Biophys Acta; 1992 Jul; 1122(2):212-8. PubMed ID: 1643095
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence for an essential histidine residue in the Neurospora crassa plasma membrane H+-ATPase.
    Morjana NA; Scarborough GA
    Biochim Biophys Acta; 1989 Oct; 985(1):19-25. PubMed ID: 2528992
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Active site chlorination of D-amino acid oxidase by N-chloro-D-leucine.
    Porter DJ; Bright HJ
    J Biol Chem; 1976 Oct; 251(19):6150-3. PubMed ID: 9413
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 6-Thiocyanatoflavins and 6-mercaptoflavins as active-site probes of flavoproteins.
    Massey V; Ghisla S; Yagi K
    Biochemistry; 1986 Dec; 25(24):8103-12. PubMed ID: 2879564
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A study of the interaction between D-amino acid oxidase and quasi-substrates.
    Shiga K; Horiike K; Isomoto A; Yamano T
    J Biochem; 1976 Nov; 80(5):1101-8. PubMed ID: 12151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction between 1,4-thiazine derivatives and D-amino-acid oxidase.
    Ricci G; Nardini M; Caccuri AM; Federici G
    Biochim Biophys Acta; 1983 Oct; 748(1):40-7. PubMed ID: 6137240
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Studies on Phe-228 and Leu-307 recombinant mutants of porcine kidney D-amino acid oxidase: expression, purification, and characterization.
    Miyano M; Fukui K; Watanabe F; Takahashi S; Tada M; Kanashiro M; Miyake Y
    J Biochem; 1991 Jan; 109(1):171-7. PubMed ID: 1673125
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification and role of ionizing functional groups at the active center of Rhodotorula gracilis D-amino acid oxidase.
    Pollegioni L; Harris CM; Molla G; Pilone MS; Ghisla S
    FEBS Lett; 2001 Nov; 507(3):323-6. PubMed ID: 11696364
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional structure of porcine kidney D-amino acid oxidase at 3.0 A resolution.
    Mizutani H; Miyahara I; Hirotsu K; Nishina Y; Shiga K; Setoyama C; Miura R
    J Biochem; 1996 Jul; 120(1):14-7. PubMed ID: 8864836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.