BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 28776948)

  • 41. A wash-free fluorescent probe with a large Stokes shift for the identification of NAFL through tracing the change of lipid droplets.
    Yang J; Wang Z; Deng Y; Zhang C; Shen X; He J; Hu L; Wang H
    Org Biomol Chem; 2023 Nov; 21(43):8767-8771. PubMed ID: 37877374
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Computational design of two-photon fluorescent probes for intracellular free zinc ions.
    Wang D; Guo JF; Ren AM; Huang S; Zhang L; Feng JK
    J Phys Chem B; 2014 Aug; 118(34):10101-10. PubMed ID: 25076057
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A near-infrared AIEgen for specific imaging of lipid droplets.
    Kang M; Gu X; Kwok RT; Leung CW; Lam JW; Li F; Tang BZ
    Chem Commun (Camb); 2016 May; 52(35):5957-60. PubMed ID: 27055861
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Automated lipid droplet quantification system for phenotypic analysis of adipocytes using CellProfiler.
    Adomshick V; Pu Y; Veiga-Lopez A
    Toxicol Mech Methods; 2020 Jun; 30(5):378-387. PubMed ID: 32208812
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A pH-Sensitive Double Chromophore Fluorescent Dye for Live-Tracking of Lipophagy.
    Engelhardt PM; Veronese M; Eryiğit AA; Das A; Kaczmarek AT; Rugarli EI; Schmalz HG
    Chemistry; 2024 May; 30(30):e202400808. PubMed ID: 38506349
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A photoactivatable Znsalen complex for super-resolution imaging of mitochondria in living cells.
    Tang J; Zhang M; Yin HY; Jing J; Xie D; Xu P; Zhang JL
    Chem Commun (Camb); 2016 Oct; 52(77):11583-6. PubMed ID: 27605151
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Automated Image Processing for Spatially Resolved Analysis of Lipid Droplets in Cultured 3T3-L1 Adipocytes.
    Sims JK; Rohr B; Miller E; Lee K
    Tissue Eng Part C Methods; 2015 Jun; 21(6):605-13. PubMed ID: 25390760
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lipophilic Red-Emitting Carbon Dots for Detecting and Tracking Lipid Droplets in Live Cells.
    Jing Y; Liu G; Zhang C; Yu B; Sun J; Lin D; Qu J
    ACS Appl Bio Mater; 2022 Mar; 5(3):1187-1193. PubMed ID: 35195413
    [TBL] [Abstract][Full Text] [Related]  

  • 49. pH-Triggered Charge Reversible Fluorescent Probe for Simultaneous Imaging of Lipid Droplets and Nucleoli in Living Cells.
    Wu S; Cui Y; Zhou M; Tao F; Wu W; Xing S; Sun R; Li X; Hu Q
    Anal Chem; 2023 Feb; 95(8):4005-4014. PubMed ID: 36795765
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Simultaneous monitoring of polarity changes of lipid droplets and lysosomes with two-photon fluorescent probes.
    Dai Y; Zhan Z; Li Q; Liu R; Lv Y
    Anal Chim Acta; 2020 Nov; 1136():34-41. PubMed ID: 33081947
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Models of lipid droplets growth and fission in adipocyte cells.
    Boschi F; Rizzatti V; Zamboni M; Sbarbati A
    Exp Cell Res; 2015 Aug; 336(2):253-62. PubMed ID: 26121906
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nile Red and BODIPY Staining of Lipid Droplets in Mouse Oocytes and Embryos.
    Bisogno S; Gąsior Ł; Ptak GE
    Methods Mol Biol; 2023; 2566():205-212. PubMed ID: 36152253
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Novel Fluoro-Pyrazine-Bridged Donor-Accepter-Donor Fluorescent Probe for Lipid Droplet-Specific Imaging in Diverse Cells and Superoxide Anion Generation.
    Li Y; Wang Q; Wei S; Chen K; Wu S; Zhang L
    Pharm Res; 2022 Jun; 39(6):1205-1214. PubMed ID: 35237921
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A fluorescence probe for imaging lipid droplet and visualization of diabetes-related polarity variations.
    Chen Z; Yue L; Guo Y; Huang H; Lin W
    Anal Chim Acta; 2024 Jul; 1312():342748. PubMed ID: 38834262
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An interface-targeting and H
    Li W; Wang L; Tang H; Cao D
    Chem Commun (Camb); 2019 Apr; 55(31):4491-4494. PubMed ID: 30916682
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantification of Lipid Metabolism in Living Cells through the Dynamics of Lipid Droplets Measured by Stimulated Raman Scattering Imaging.
    Zhang C; Li J; Lan L; Cheng JX
    Anal Chem; 2017 Apr; 89(8):4502-4507. PubMed ID: 28345862
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Computational design of two-photon fluorescent probes for a zinc ion based on a Salen ligand.
    Huang S; Zou LY; Ren AM; Guo JF; Liu XT; Feng JK; Yang BZ
    Inorg Chem; 2013 May; 52(10):5702-13. PubMed ID: 23654211
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Specific Fluorescence Probes for Lipid Droplets Based on Simple AIEgens.
    Wang Z; Gui C; Zhao E; Wang J; Li X; Qin A; Zhao Z; Yu Z; Tang BZ
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10193-200. PubMed ID: 27053008
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Novel Fluorescence-Based Method To Characterize the Antioxidative Effects of Food Metabolites on Lipid Droplets in Cultured Hepatocytes.
    Tsukui T; Chen Z; Fuda H; Furukawa T; Oura K; Sakurai T; Hui SP; Chiba H
    J Agric Food Chem; 2019 Sep; 67(35):9934-9941. PubMed ID: 31402655
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Polarity-sensitive and lipid droplet-specific red emission fluorophore for identifying fatty liver of living mice through in vivo imaging.
    Hu L; Pan J; Zhang C; Yu K; Shen S; Wang Y; Shen X; Gu X; Han J; Wang H
    Biosens Bioelectron; 2022 Nov; 216():114618. PubMed ID: 35988431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.