BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 2877712)

  • 21. Inhibition of spinal nociceptive transmission from the midbrain, pons and medulla in the rat: activation of descending inhibition by morphine, glutamate and electrical stimulation.
    Jones SL; Gebhart GF
    Brain Res; 1988 Sep; 460(2):281-96. PubMed ID: 2852046
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analgesia after lesions of nucleus reticularis magnocellularis: differential effect on supraspinal versus spinal pain reflexes.
    Zemlan FP; Kow LM; Pfaff DW
    Pain; 1984 Mar; 18(3):221-237. PubMed ID: 6328398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spinal monoamine mediation of stimulation-produced antinociception from the lateral hypothalamus.
    Aimone LD; Gebhart GF
    Brain Res; 1987 Feb; 403(2):290-300. PubMed ID: 2881607
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vagal afferent modulation of a nociceptive reflex in rats: involvement of spinal opioid and monoamine receptors.
    Ren K; Randich A; Gebhart GF
    Brain Res; 1988 Apr; 446(2):285-94. PubMed ID: 2836031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of descending facilitation and inhibition of spinal nociceptive transmission from the nuclei reticularis gigantocellularis and gigantocellularis pars alpha in the rat.
    Zhuo M; Gebhart GF
    J Neurophysiol; 1992 Jun; 67(6):1599-614. PubMed ID: 1352804
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biphasic modulation of spinal nociceptive transmission from the medullary raphe nuclei in the rat.
    Zhuo M; Gebhart GF
    J Neurophysiol; 1997 Aug; 78(2):746-58. PubMed ID: 9307109
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NON-STEROIDAL ANTI-INFLAMMATORY DRUGS'S ANTINOCICEPTION MEDIATED BY THE OPIOID MECHANISM IN THE NUCLEUS RAPHE MAGNUS.
    Gorgiladze T; Nozadze I; Abzianidze E; Tsagareli M
    Georgian Med News; 2017 Apr; (265):99-104. PubMed ID: 28574391
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intrathecal morphine and clonidine: antinociceptive tolerance and cross-tolerance and effects on blood pressure.
    Solomon RE; Gebhart GF
    J Pharmacol Exp Ther; 1988 May; 245(2):444-54. PubMed ID: 3367301
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lateral reticular nucleus modulates the cardiosomatic reflex evoked by intrapericardial capsaicin in the rat.
    Han M; Liu XH; Sun N; Du JQ; Zhu JX; Li Q; Tang JS
    Eur J Neurosci; 2013 May; 37(9):1511-8. PubMed ID: 23465085
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nucleus cuneiformis and pain modulation: anatomy and behavioral pharmacology.
    Zemlan FP; Behbehani MM
    Brain Res; 1988 Jun; 453(1-2):89-102. PubMed ID: 2456838
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cortical influences on neurons of the lateral reticular nucleus responding to noxious stimuli.
    Sotgiu ML
    Somatosens Mot Res; 1989; 6(5-6):589-99. PubMed ID: 2816205
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intravenous morphine-induced activation of vagal afferents: peripheral, spinal, and CNS substrates mediating inhibition of spinal nociception and cardiovascular responses.
    Randich A; Thurston CL; Ludwig PS; Robertson JD; Rasmussen C
    J Neurophysiol; 1992 Oct; 68(4):1027-45. PubMed ID: 1432065
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of descending inhibition and facilitation from the nuclei reticularis gigantocellularis and gigantocellularis pars alpha in the rat.
    Zhuo M; Gebhart GF
    Pain; 1990 Sep; 42(3):337-350. PubMed ID: 1979161
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of neurons in the area of the medullary lateral reticular nucleus responsive to noxious visceral and cutaneous stimuli.
    Ness TJ; Follett KA; Piper J; Dirks BA
    Brain Res; 1998 Aug; 802(1-2):163-74. PubMed ID: 9748555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tolerance induced by non-opioid analgesic microinjections into rat's periaqueductal gray and nucleus raphe.
    Tsiklauri N; Nozadze I; Gurtskaia G; Berishvili V; Abzianidze E; Tsagareli M
    Georgian Med News; 2010 Mar; (180):47-55. PubMed ID: 20413817
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vagal afferent stimulation-produced effects on nociception in capsaicin-treated rats.
    Ren K; Zhuo M; Randich A; Gebhart GF
    J Neurophysiol; 1993 May; 69(5):1530-40. PubMed ID: 8389827
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of descending modulation of nociception from the A5 cell group.
    Burnett A; Gebhart GF
    Brain Res; 1991 Apr; 546(2):271-81. PubMed ID: 1676926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrophysiological identification of spinally projecting neurons in the lateral reticular nucleus of the rat.
    Liu RH; Tang JS; Hou ZL
    Brain Res; 1989 Mar; 481(2):350-5. PubMed ID: 2720387
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alpha-adrenergic receptor agonists, but not antagonists, alter the tail-flick latency when microinjected into the rostral ventromedial medulla of the lightly anesthetized rat.
    Haws CM; Heinricher MM; Fields HL
    Brain Res; 1990 Nov; 533(2):192-5. PubMed ID: 1981167
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Serotonin and/or an excitatory amino acid in the medial medulla mediates stimulation-produced antinociception from the lateral hypothalamus in the rat.
    Aimone LD; Gebhart GF
    Brain Res; 1988 May; 450(1-2):170-80. PubMed ID: 2841001
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.