These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 28777622)

  • 1. Kardar-Parisi-Zhang Interfaces with Inward Growth.
    Fukai YT; Takeuchi KA
    Phys Rev Lett; 2017 Jul; 119(3):030602. PubMed ID: 28777622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kardar-Parisi-Zhang Interfaces with Curved Initial Shapes and Variational Formula.
    Fukai YT; Takeuchi KA
    Phys Rev Lett; 2020 Feb; 124(6):060601. PubMed ID: 32109110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crossover from growing to stationary interfaces in the Kardar-Parisi-Zhang class.
    Takeuchi KA
    Phys Rev Lett; 2013 May; 110(21):210604. PubMed ID: 23745853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. When fast and slow interfaces grow together: Connection to the half-space problem of the Kardar-Parisi-Zhang class.
    Ito Y; Takeuchi KA
    Phys Rev E; 2018 Apr; 97(4-1):040103. PubMed ID: 29758753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kardar-Parisi-Zhang growth on one-dimensional decreasing substrates.
    Carrasco ISS; Oliveira TJ
    Phys Rev E; 2018 Jul; 98(1-1):010102. PubMed ID: 30110783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion in time-dependent random media and the Kardar-Parisi-Zhang equation.
    Le Doussal P; Thiery T
    Phys Rev E; 2017 Jul; 96(1-1):010102. PubMed ID: 29347226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competing Universalities in Kardar-Parisi-Zhang Growth Models.
    Saberi AA; Dashti-Naserabadi H; Krug J
    Phys Rev Lett; 2019 Feb; 122(4):040605. PubMed ID: 30768334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Evidence for Universal Statistics of Stationary Kardar-Parisi-Zhang Interfaces.
    Iwatsuka T; Fukai YT; Takeuchi KA
    Phys Rev Lett; 2020 Jun; 124(25):250602. PubMed ID: 32639767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exact solution for the Kardar-Parisi-Zhang equation with flat initial conditions.
    Calabrese P; Le Doussal P
    Phys Rev Lett; 2011 Jun; 106(25):250603. PubMed ID: 21770622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-dimensional Kardar-Parisi-Zhang equation: an exact solution and its universality.
    Sasamoto T; Spohn H
    Phys Rev Lett; 2010 Jun; 104(23):230602. PubMed ID: 20867222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dimensional crossover in Kardar-Parisi-Zhang growth.
    Carrasco ISS; Oliveira TJ
    Phys Rev E; 2024 Apr; 109(4):L042102. PubMed ID: 38755819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circular Kardar-Parisi-Zhang interfaces evolving out of the plane.
    Carrasco ISS; Oliveira TJ
    Phys Rev E; 2019 Mar; 99(3-1):032140. PubMed ID: 30999413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Universal fluctuations in Kardar-Parisi-Zhang growth on one-dimensional flat substrates.
    Oliveira TJ; Ferreira SC; Alves SG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):010601. PubMed ID: 22400503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extremal paths, the stochastic heat equation, and the three-dimensional Kardar-Parisi-Zhang universality class.
    Halpin-Healy T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042118. PubMed ID: 24229127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-KPZ fluctuations in the derivative of the Kardar-Parisi-Zhang equation or noisy Burgers equation.
    Rodríguez-Fernández E; Cuerno R
    Phys Rev E; 2020 May; 101(5-1):052126. PubMed ID: 32575191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-time growth of a Kardar-Parisi-Zhang interface with flat initial conditions.
    Gueudré T; Le Doussal P; Rosso A; Henry A; Calabrese P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041151. PubMed ID: 23214573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kardar-Parisi-Zhang growth on square domains that enlarge nonlinearly in time.
    Carrasco ISS; Oliveira TJ
    Phys Rev E; 2022 May; 105(5-1):054804. PubMed ID: 35706246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initial perturbation matters: Implications of geometry-dependent universal Kardar-Parisi-Zhang statistics for spatiotemporal chaos.
    Fukai YT; Takeuchi KA
    Chaos; 2021 Nov; 31(11):111103. PubMed ID: 34881614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Width distributions and the upper critical dimension of Kardar-Parisi-Zhang interfaces.
    Marinari E; Pagnani A; Parisi G; Rácz Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026136. PubMed ID: 11863616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-dimensional Kardar-Parisi-Zhang and Kuramoto-Sivashinsky universality class: Limit distributions.
    Roy D; Pandit R
    Phys Rev E; 2020 Mar; 101(3-1):030103. PubMed ID: 32289936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.