These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 28777726)
1. Nonconvex Policy Search Using Variational Inequalities. Zhan Y; Ammar HB; Taylor ME Neural Comput; 2017 Oct; 29(10):2800-2824. PubMed ID: 28777726 [TBL] [Abstract][Full Text] [Related]
2. Stochastic proximal gradient methods for nonconvex problems in Hilbert spaces. Geiersbach C; Scarinci T Comput Optim Appl; 2021; 78(3):705-740. PubMed ID: 33707813 [TBL] [Abstract][Full Text] [Related]
3. Stochastic learning via optimizing the variational inequalities. Tao Q; Gao QK; Chu DJ; Wu GW IEEE Trans Neural Netw Learn Syst; 2014 Oct; 25(10):1769-78. PubMed ID: 25291732 [TBL] [Abstract][Full Text] [Related]
4. An Inertial Projection Neural Network for Solving Variational Inequalities. Xing He ; Tingwen Huang ; Junzhi Yu ; Chuandong Li ; Chaojie Li IEEE Trans Cybern; 2017 Mar; 47(3):809-814. PubMed ID: 26887026 [TBL] [Abstract][Full Text] [Related]
5. Convergence analysis of an iterative algorithm for the extended regularized nonconvex variational inequalities. Zhao Y; Shi L; Chen R J Inequal Appl; 2017; 2017(1):87. PubMed ID: 28496295 [TBL] [Abstract][Full Text] [Related]
6. Kernel-based least squares policy iteration for reinforcement learning. Xu X; Hu D; Lu X IEEE Trans Neural Netw; 2007 Jul; 18(4):973-92. PubMed ID: 17668655 [TBL] [Abstract][Full Text] [Related]
7. Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network. Hu X; Wang J IEEE Trans Neural Netw; 2006 Nov; 17(6):1487-99. PubMed ID: 17131663 [TBL] [Abstract][Full Text] [Related]
8. OPTIMAL COMPUTATIONAL AND STATISTICAL RATES OF CONVERGENCE FOR SPARSE NONCONVEX LEARNING PROBLEMS. Wang Z; Liu H; Zhang T Ann Stat; 2014; 42(6):2164-2201. PubMed ID: 25544785 [TBL] [Abstract][Full Text] [Related]
9. Scalable Proximal Jacobian Iteration Method With Global Convergence Analysis for Nonconvex Unconstrained Composite Optimizations. Zhang H; Qian J; Gao J; Yang J; Xu C IEEE Trans Neural Netw Learn Syst; 2019 Sep; 30(9):2825-2839. PubMed ID: 30668503 [TBL] [Abstract][Full Text] [Related]
11. A policy iteration approach to online optimal control of continuous-time constrained-input systems. Modares H; Naghibi Sistani MB; Lewis FL ISA Trans; 2013 Sep; 52(5):611-21. PubMed ID: 23706414 [TBL] [Abstract][Full Text] [Related]
12. Variational policy search using sparse Gaussian process priors for learning multimodal optimal actions. Sasaki H; Matsubara T Neural Netw; 2021 Nov; 143():291-302. PubMed ID: 34166892 [TBL] [Abstract][Full Text] [Related]
13. Learning Rates for Nonconvex Pairwise Learning. Li S; Liu Y IEEE Trans Pattern Anal Mach Intell; 2023 Aug; 45(8):9996-10011. PubMed ID: 37030773 [TBL] [Abstract][Full Text] [Related]
14. Efficient algorithm for nonconvex minimization and its application to PM regularization. Li WP; Wang ZM; Deng Y IEEE Trans Image Process; 2012 Oct; 21(10):4322-33. PubMed ID: 22829405 [TBL] [Abstract][Full Text] [Related]
15. Optimal codesign of nonlinear control systems based on a modified policy iteration method. Jiang Y; Wang Y; Bortoff SA; Jiang ZP IEEE Trans Neural Netw Learn Syst; 2015 Feb; 26(2):409-14. PubMed ID: 25576583 [TBL] [Abstract][Full Text] [Related]
16. A nonfeasible gradient projection recurrent neural network for equality-constrained optimization problems. Barbarosou MP; Maratos NG IEEE Trans Neural Netw; 2008 Oct; 19(10):1665-77. PubMed ID: 18842472 [TBL] [Abstract][Full Text] [Related]
17. A Neurodynamic Model to Solve Nonlinear Pseudo-Monotone Projection Equation and Its Applications. Eshaghnezhad M; Effati S; Mansoori A IEEE Trans Cybern; 2017 Oct; 47(10):3050-3062. PubMed ID: 27705876 [TBL] [Abstract][Full Text] [Related]
18. Dualityfree Methods for Stochastic Composition Optimization. Liu L; Liu J; Tao D IEEE Trans Neural Netw Learn Syst; 2019 Apr; 30(4):1205-1217. PubMed ID: 30222587 [TBL] [Abstract][Full Text] [Related]
19. Low-rank structure learning via nonconvex heuristic recovery. Deng Y; Dai Q; Liu R; Zhang Z; Hu S IEEE Trans Neural Netw Learn Syst; 2013 Mar; 24(3):383-96. PubMed ID: 24808312 [TBL] [Abstract][Full Text] [Related]
20. Reinforcement learning for partially observable dynamic processes: adaptive dynamic programming using measured output data. Lewis FL; Vamvoudakis KG IEEE Trans Syst Man Cybern B Cybern; 2011 Feb; 41(1):14-25. PubMed ID: 20350860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]