These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Multiclass fMRI data decoding and visualization using supervised self-organizing maps. Hausfeld L; Valente G; Formisano E Neuroimage; 2014 Aug; 96():54-66. PubMed ID: 24531045 [TBL] [Abstract][Full Text] [Related]
9. Bayesian reconstruction of multiscale local contrast images from brain activity. Song S; Ma X; Zhan Y; Zhan Z; Yao L; Zhang J J Neurosci Methods; 2013 Oct; 220(1):39-45. PubMed ID: 23999175 [TBL] [Abstract][Full Text] [Related]
10. Grouped sparse Bayesian learning for voxel selection in multivoxel pattern analysis of fMRI data. Wen Z; Yu T; Yu Z; Li Y Neuroimage; 2019 Jan; 184():417-430. PubMed ID: 30240902 [TBL] [Abstract][Full Text] [Related]
11. Common and unique neural activations in autobiographical, episodic, and semantic retrieval. Burianova H; Grady CL J Cogn Neurosci; 2007 Sep; 19(9):1520-34. PubMed ID: 17714013 [TBL] [Abstract][Full Text] [Related]
12. Decoding the individual finger movements from single-trial functional magnetic resonance imaging recordings of human brain activity. Shen G; Zhang J; Wang M; Lei D; Yang G; Zhang S; Du X Eur J Neurosci; 2014 Jun; 39(12):2071-82. PubMed ID: 24661456 [TBL] [Abstract][Full Text] [Related]
13. Exploring predictive and reproducible modeling with the single-subject FIAC dataset. Chen X; Pereira F; Lee W; Strother S; Mitchell T Hum Brain Mapp; 2006 May; 27(5):452-61. PubMed ID: 16565951 [TBL] [Abstract][Full Text] [Related]
14. Modular encoding and decoding models derived from bayesian canonical correlation analysis. Fujiwara Y; Miyawaki Y; Kamitani Y Neural Comput; 2013 Apr; 25(4):979-1005. PubMed ID: 23339608 [TBL] [Abstract][Full Text] [Related]
15. Functional-anatomic study of episodic retrieval. II. Selective averaging of event-related fMRI trials to test the retrieval success hypothesis. Buckner RL; Koutstaal W; Schacter DL; Dale AM; Rotte M; Rosen BR Neuroimage; 1998 Apr; 7(3):163-75. PubMed ID: 9597658 [TBL] [Abstract][Full Text] [Related]
16. Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy. Combrisson E; Jerbi K J Neurosci Methods; 2015 Jul; 250():126-36. PubMed ID: 25596422 [TBL] [Abstract][Full Text] [Related]
17. Transfer learning of deep neural network representations for fMRI decoding. Svanera M; Savardi M; Benini S; Signoroni A; Raz G; Hendler T; Muckli L; Goebel R; Valente G J Neurosci Methods; 2019 Dec; 328():108319. PubMed ID: 31585315 [TBL] [Abstract][Full Text] [Related]
18. Empirical Markov Chain Monte Carlo Bayesian analysis of fMRI data. de Pasquale F; Del Gratta C; Romani GL Neuroimage; 2008 Aug; 42(1):99-111. PubMed ID: 18538586 [TBL] [Abstract][Full Text] [Related]
19. Utilizing temporal information in fMRI decoding: classifier using kernel regression methods. Chu C; Mourão-Miranda J; Chiu YC; Kriegeskorte N; Tan G; Ashburner J Neuroimage; 2011 Sep; 58(2):560-71. PubMed ID: 21729756 [TBL] [Abstract][Full Text] [Related]
20. The effect of spatial resolution on decoding accuracy in fMRI multivariate pattern analysis. Gardumi A; Ivanov D; Hausfeld L; Valente G; Formisano E; Uludağ K Neuroimage; 2016 May; 132():32-42. PubMed ID: 26899782 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]