These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 2877810)

  • 1. Cyclic nucleotide action is mediated through adenosine receptors in damselfish motile iridophores.
    Oshima N; Furuuchi T; Fujii R
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1986; 85(1):89-93. PubMed ID: 2877810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenosine receptors mediate pigment dispersion in leucophores of the medaka, Oryzias latipes.
    Oshima N; Yamaji N; Fujii R
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1986; 85(1):245-8. PubMed ID: 2877798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Action of melanin-concentrating hormone (MCH) on teleost chromatophores.
    Oshima N; Kasukawa H; Fujii R; Wilkes BC; Hruby VJ; Hadley ME
    Gen Comp Endocrinol; 1986 Dec; 64(3):381-8. PubMed ID: 3026881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of chromatophore movements in dermal chromatic units of blue damselfish--II. The motile iridophore.
    Kasukawa H; Oshima N; Fujii R
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1986; 83(1):1-7. PubMed ID: 2869880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of melanophore-stimulating hormone and cyclic nucleotides on teleost fish chromatophores.
    Negishi S; Obika M
    Gen Comp Endocrinol; 1980 Dec; 42(4):471-6. PubMed ID: 6109685
    [No Abstract]   [Full Text] [Related]  

  • 6. Control of chromatophore movements in dermal chromatic units of blue damselfish--I. The melanophore.
    Kasukawa H; Sugimoto M; Oshima N; Fujii R
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1985; 81(2):253-7. PubMed ID: 2861944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro response of goldfish (Carassius auratus L.) dermal melanophores to cyclic 3',5'-nucleotides, nucleoside 5'-phosphates and methylxanthines.
    Abramowitz J; Chavin W
    J Cell Physiol; 1974 Oct; 84(2):301-9. PubMed ID: 4373483
    [No Abstract]   [Full Text] [Related]  

  • 8. A subtype of adenosine receptors mediating pigment dispersion in leucophores of the medaka: evidence for an A2-receptor.
    Namoto S
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1987; 88(1):75-81. PubMed ID: 2890491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integumental reddish-violet coloration owing to novel dichromatic chromatophores in the teleost fish, Pseudochromis diadema.
    Goda M; Ohata M; Ikoma H; Fujiyoshi Y; Sugimoto M; Fujii R
    Pigment Cell Melanoma Res; 2011 Aug; 24(4):614-7. PubMed ID: 21501419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Receptor mechanisms in fish chromatophores--VI. Adenosine receptors mediate pigment dispersion in guppy and catfish melanophores.
    Miyashita Y; Kumazawa T; Fujii R
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 77(2):205-10. PubMed ID: 6144418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of androgens on the development of nuptial coloration and chromatophores in the bitterling Rhodeus ocellatus ocellatus.
    Kobayashi M; Tajima C; Sugimoto M
    Zoolog Sci; 2009 Feb; 26(2):125-30. PubMed ID: 19341329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Malleable skin coloration in cephalopods: selective reflectance, transmission and absorbance of light by chromatophores and iridophores.
    Mäthger LM; Hanlon RT
    Cell Tissue Res; 2007 Jul; 329(1):179-86. PubMed ID: 17410381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divisionistic generation of skin hue and the change of shade in the scalycheek damselfish, Pomacentrus lepidogenys.
    Kasukawa H; Oshima N
    Pigment Cell Res; 1987; 1(3):152-7. PubMed ID: 3508273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hormone-induced pigment translocations in amphibian dermal iridophores, in vitro: changes in cell shape.
    Butman BT; Obika M; Tchen TT; Taylor JD
    J Exp Zool; 1979 Apr; 208(1):17-34. PubMed ID: 224136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Receptor mechanisms in fish chromatophores--VII. Muscarinic cholinoceptors and alpha adrenoceptors, both mediating pigment aggregation, strangely coexist in Corydoras melanophores.
    Kasukawa H; Fujii R
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1985; 80(2):211-5. PubMed ID: 2860997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural control of motile activity of light-sensitive iridophores in the neon tetra.
    Nagaishi H; Oshima N
    Pigment Cell Res; 1989; 2(6):485-92. PubMed ID: 2557604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adrenergic mechanisms associated with the movement of platelets in iridophores from the freshwater goby, Odontobutis obscura.
    Maeno N; Iga T
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1992 Jun; 102(2):233-7. PubMed ID: 1358536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-sensitive motile iridophores and visual pigments in the neon tetra, Paracheirodon innesi.
    Kasai A; Oshima N
    Zoolog Sci; 2006 Sep; 23(9):815-9. PubMed ID: 17043404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The regulation of motile activity in fish chromatophores.
    Fujii R
    Pigment Cell Res; 2000 Oct; 13(5):300-19. PubMed ID: 11041206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid integumental color changes due to novel iridophores in the chameleon sand tilefish Hoplolatilus chlupatyi.
    Goda M
    Pigment Cell Melanoma Res; 2017 May; 30(3):368-371. PubMed ID: 28192625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.