BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 28778149)

  • 41. Optical Nano-mapping and Analysis of Plant Genomes.
    Luo MC; Deal KR; Murray A; Zhu T; Hastie AR; Stedman W; Sadowski H; Saghbini M
    Methods Mol Biol; 2016; 1429():103-17. PubMed ID: 27511170
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of genome structure between white clover and Medicago truncatula supports homoeologous group nomenclature based on conserved synteny.
    George J; Sawbridge TI; Cogan NO; Gendall AR; Smith KF; Spangenberg GC; Forster JW
    Genome; 2008 Nov; 51(11):905-11. PubMed ID: 18956023
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genome assembly of Medicago truncatula accession SA27063 provides insight into spring black stem and leaf spot disease resistance.
    Botkin JR; Farmer AD; Young ND; Curtin SJ
    BMC Genomics; 2024 Feb; 25(1):204. PubMed ID: 38395768
    [TBL] [Abstract][Full Text] [Related]  

  • 44. LRScaf: improving draft genomes using long noisy reads.
    Qin M; Wu S; Li A; Zhao F; Feng H; Ding L; Ruan J
    BMC Genomics; 2019 Dec; 20(1):955. PubMed ID: 31818249
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genome-wide identification and characterization of the Dof gene family in Medicago truncatula.
    Shu YJ; Song LL; Zhang J; Liu Y; Guo CH
    Genet Mol Res; 2015 Sep; 14(3):10645-57. PubMed ID: 26400295
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Whole-Genome Restriction Mapping by "Subhaploid"-Based RAD Sequencing: An Efficient and Flexible Approach for Physical Mapping and Genome Scaffolding.
    Dou J; Dou H; Mu C; Zhang L; Li Y; Wang J; Li T; Li Y; Hu X; Wang S; Bao Z
    Genetics; 2017 Jul; 206(3):1237-1250. PubMed ID: 28468906
    [TBL] [Abstract][Full Text] [Related]  

  • 47. scanPAV: a pipeline for extracting presence-absence variations in genome pairs.
    Giordano F; Stammnitz MR; Murchison EP; Ning Z
    Bioinformatics; 2018 Sep; 34(17):3022-3024. PubMed ID: 29608694
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-quality chromosome-level de novo assembly of the Trifolium repens.
    Wang H; Wu Y; He Y; Li G; Ma L; Li S; Huang J; Yang G
    BMC Genomics; 2023 Jun; 24(1):326. PubMed ID: 37312068
    [TBL] [Abstract][Full Text] [Related]  

  • 49. μLAS technology for DNA isolation coupled to Cas9-assisted targeting for sequencing and assembly of a 30 kb region in plant genome.
    Milon N; Chantry-Darmon C; Satge C; Fustier MA; Cauet S; Moreau S; Callot C; Bellec A; Gabrieli T; Saïas L; Boutonnet A; Ginot F; Bergès H; Bancaud A
    Nucleic Acids Res; 2019 Sep; 47(15):8050-8060. PubMed ID: 31505675
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reference-guided de novo assembly approach improves genome reconstruction for related species.
    Lischer HEL; Shimizu KK
    BMC Bioinformatics; 2017 Nov; 18(1):474. PubMed ID: 29126390
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Organelle_PBA, a pipeline for assembling chloroplast and mitochondrial genomes from PacBio DNA sequencing data.
    Soorni A; Haak D; Zaitlin D; Bombarely A
    BMC Genomics; 2017 Jan; 18(1):49. PubMed ID: 28061749
    [TBL] [Abstract][Full Text] [Related]  

  • 52. BiSCoT: improving large eukaryotic genome assemblies with optical maps.
    Istace B; Belser C; Aury JM
    PeerJ; 2020; 8():e10150. PubMed ID: 33194395
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improving genome assemblies by sequencing PCR products with PacBio.
    Zhang X; Davenport KW; Gu W; Daligault HE; Munk AC; Tashima H; Reitenga K; Green LD; Han CS
    Biotechniques; 2012 Jul; 53(1):61-2. PubMed ID: 22780321
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sequencing Medicago truncatula expressed sequenced tags using 454 Life Sciences technology.
    Cheung F; Haas BJ; Goldberg SM; May GD; Xiao Y; Town CD
    BMC Genomics; 2006 Oct; 7():272. PubMed ID: 17062153
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enabling Reverse Genetics in Medicago truncatula Using High-Throughput Sequencing for Tnt1 Flanking Sequence Recovery.
    Cheng X; Krom N; Zhang S; Mysore KS; Udvardi M; Wen J
    Methods Mol Biol; 2017; 1610():25-37. PubMed ID: 28439855
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hybrid assembly of the large and highly repetitive genome of
    Zimin AV; Puiu D; Luo MC; Zhu T; Koren S; Marçais G; Yorke JA; Dvořák J; Salzberg SL
    Genome Res; 2017 May; 27(5):787-792. PubMed ID: 28130360
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genome-wide methylation landscape during somatic embryogenesis in Medicago truncatula reveals correlation between Tnt1 retrotransposition and hyperactive methylation regions.
    Nandety RS; Oh S; Lee HK; Krom N; Gupta R; Mysore KS
    Plant J; 2024 Jul; 119(1):557-576. PubMed ID: 38627952
    [TBL] [Abstract][Full Text] [Related]  

  • 58. MTGD: The Medicago truncatula genome database.
    Krishnakumar V; Kim M; Rosen BD; Karamycheva S; Bidwell SL; Tang H; Town CD
    Plant Cell Physiol; 2015 Jan; 56(1):e1. PubMed ID: 25432968
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of the interaction between the bacterial wilt pathogen Ralstonia solanacearum and the model legume plant Medicago truncatula.
    Vailleau F; Sartorel E; Jardinaud MF; Chardon F; Genin S; Huguet T; Gentzbittel L; Petitprez M
    Mol Plant Microbe Interact; 2007 Feb; 20(2):159-67. PubMed ID: 17313167
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell.
    Michael TP; Jupe F; Bemm F; Motley ST; Sandoval JP; Lanz C; Loudet O; Weigel D; Ecker JR
    Nat Commun; 2018 Feb; 9(1):541. PubMed ID: 29416032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.