These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 28778489)

  • 1. Clustering of RNA-Seq samples: Comparison study on cancer data.
    Jaskowiak PA; Costa IG; Campello RJGB
    Methods; 2018 Jan; 132():42-49. PubMed ID: 28778489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.
    Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of gene signatures from RNA-seq data using Pareto-optimal cluster algorithm.
    Mallik S; Zhao Z
    BMC Syst Biol; 2018 Dec; 12(Suppl 8):126. PubMed ID: 30577846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of similarity metrics on single-cell RNA-seq data clustering.
    Kim T; Chen IR; Lin Y; Wang AY; Yang JYH; Yang P
    Brief Bioinform; 2019 Nov; 20(6):2316-2326. PubMed ID: 30137247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single cell RNA-seq data clustering using TF-IDF based methods.
    Moussa M; Măndoiu II
    BMC Genomics; 2018 Aug; 19(Suppl 6):569. PubMed ID: 30367575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing Dissimilarity Measures for Sample-Based Hierarchical Clustering of RNA Sequencing Data Using Plasmode Datasets.
    Reeb PD; Bramardi SJ; Steibel JP
    PLoS One; 2015; 10(7):e0132310. PubMed ID: 26162080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive evaluation of AmpliSeq transcriptome, a novel targeted whole transcriptome RNA sequencing methodology for global gene expression analysis.
    Li W; Turner A; Aggarwal P; Matter A; Storvick E; Arnett DK; Broeckel U
    BMC Genomics; 2015 Dec; 16():1069. PubMed ID: 26673413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EPIG-Seq: extracting patterns and identifying co-expressed genes from RNA-Seq data.
    Li J; Bushel PR
    BMC Genomics; 2016 Mar; 17():255. PubMed ID: 27004791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subject level clustering using a negative binomial model for small transcriptomic studies.
    Li Q; Noel-MacDonnell JR; Koestler DC; Goode EL; Fridley BL
    BMC Bioinformatics; 2018 Dec; 19(1):474. PubMed ID: 30541426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of stranded and non-stranded RNA-seq transcriptome profiling and investigation of gene overlap.
    Zhao S; Zhang Y; Gordon W; Quan J; Xi H; Du S; von Schack D; Zhang B
    BMC Genomics; 2015 Sep; 16(1):675. PubMed ID: 26334759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SAME-clustering: Single-cell Aggregated Clustering via Mixture Model Ensemble.
    Huh R; Yang Y; Jiang Y; Shen Y; Li Y
    Nucleic Acids Res; 2020 Jan; 48(1):86-95. PubMed ID: 31777938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PR2S2Clust: Patched RNA-seq read segments' structure-oriented clustering.
    Biswas AK; Gao JX
    J Bioinform Comput Biol; 2016 Oct; 14(5):1650027. PubMed ID: 27455882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-seq based transcriptomic map reveals new insights into mouse salivary gland development and maturation.
    Gluck C; Min S; Oyelakin A; Smalley K; Sinha S; Romano RA
    BMC Genomics; 2016 Nov; 17(1):923. PubMed ID: 27852218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA-Seq: revelation of the messengers.
    Van Verk MC; Hickman R; Pieterse CM; Van Wees SC
    Trends Plant Sci; 2013 Apr; 18(4):175-9. PubMed ID: 23481128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole-Transcriptome profiling of formalin-fixed, paraffin-embedded renal cell carcinoma by RNA-seq.
    Li P; Conley A; Zhang H; Kim HL
    BMC Genomics; 2014 Dec; 15(1):1087. PubMed ID: 25495041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cluster analysis on high dimensional RNA-seq data with applications to cancer research - An evaluation study.
    Vidman L; Källberg D; Rydén P
    PLoS One; 2019; 14(12):e0219102. PubMed ID: 31805048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hierarchical model for clustering m(6)A methylation peaks in MeRIP-seq data.
    Cui X; Meng J; Zhang S; Rao MK; Chen Y; Huang Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):520. PubMed ID: 27556597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-Poisson dynamic mixture model to cluster developmental patterns of gene expression by RNA-seq.
    Ye M; Wang Z; Wang Y; Wu R
    Brief Bioinform; 2015 Mar; 16(2):205-15. PubMed ID: 24817567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential expression analysis using a model-based gene clustering algorithm for RNA-seq data.
    Osabe T; Shimizu K; Kadota K
    BMC Bioinformatics; 2021 Oct; 22(1):511. PubMed ID: 34670485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation between RNA-Seq and microarrays results using TCGA data.
    Chen L; Sun F; Yang X; Jin Y; Shi M; Wang L; Shi Y; Zhan C; Wang Q
    Gene; 2017 Sep; 628():200-204. PubMed ID: 28734892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.