These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
936 related articles for article (PubMed ID: 28778889)
1. Transcriptome Response to Heavy Metals in Sinorhizobium meliloti CCNWSX0020 Reveals New Metal Resistance Determinants That Also Promote Bioremediation by Medicago lupulina in Metal-Contaminated Soil. Lu M; Jiao S; Gao E; Song X; Li Z; Hao X; Rensing C; Wei G Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28778889 [TBL] [Abstract][Full Text] [Related]
2. Genes conferring copper resistance in Sinorhizobium meliloti CCNWSX0020 also promote the growth of Medicago lupulina in copper-contaminated soil. Li Z; Ma Z; Hao X; Rensing C; Wei G Appl Environ Microbiol; 2014 Mar; 80(6):1961-71. PubMed ID: 24441157 [TBL] [Abstract][Full Text] [Related]
3. Heavy metal accumulation in Lathyrus sativus growing in contaminated soils and identification of symbiotic resistant bacteria. Abdelkrim S; Jebara SH; Saadani O; Chiboub M; Abid G; Mannai K; Jebara M Arch Microbiol; 2019 Jan; 201(1):107-121. PubMed ID: 30276423 [TBL] [Abstract][Full Text] [Related]
4. Promotion of growth and metal accumulation of alfalfa by coinoculation with Jian L; Bai X; Zhang H; Song X; Li Z PeerJ; 2019; 7():e6875. PubMed ID: 31119081 [TBL] [Abstract][Full Text] [Related]
5. Rhizobium inoculation enhances copper tolerance by affecting copper uptake and regulating the ascorbate-glutathione cycle and phytochelatin biosynthesis-related gene expression in Medicago sativa seedlings. Chen J; Liu YQ; Yan XW; Wei GH; Zhang JH; Fang LC Ecotoxicol Environ Saf; 2018 Oct; 162():312-323. PubMed ID: 30005404 [TBL] [Abstract][Full Text] [Related]
6. Zinc Resistance Mechanisms of P1B-type ATPases in Sinorhizobium meliloti CCNWSX0020. Lu M; Li Z; Liang J; Wei Y; Rensing C; Wei G Sci Rep; 2016 Jul; 6():29355. PubMed ID: 27378600 [TBL] [Abstract][Full Text] [Related]
7. Copper tolerance mechanisms of Mesorhizobium amorphae and its role in aiding phytostabilization by Robinia pseudoacacia in copper contaminated soil. Hao X; Xie P; Zhu YG; Taghavi S; Wei G; Rensing C Environ Sci Technol; 2015 Feb; 49(4):2328-40. PubMed ID: 25594414 [TBL] [Abstract][Full Text] [Related]
8. Rhizobial symbiosis effect on the growth, metal uptake, and antioxidant responses of Medicago lupulina under copper stress. Kong Z; Mohamad OA; Deng Z; Liu X; Glick BR; Wei G Environ Sci Pollut Res Int; 2015 Aug; 22(16):12479-89. PubMed ID: 25903186 [TBL] [Abstract][Full Text] [Related]
9. Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China. Xie P; Hao X; Herzberg M; Luo Y; Nies DH; Wei G J Environ Sci (China); 2015 Jan; 27():179-87. PubMed ID: 25597676 [TBL] [Abstract][Full Text] [Related]
11. Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils. Ju W; Liu L; Jin X; Duan C; Cui Y; Wang J; Ma D; Zhao W; Wang Y; Fang L Chemosphere; 2020 Sep; 254():126724. PubMed ID: 32334248 [TBL] [Abstract][Full Text] [Related]
12. Draft genome sequence of Sinorhizobium meliloti CCNWSX0020, a nitrogen-fixing symbiont with copper tolerance capability isolated from lead-zinc mine tailings. Li Z; Ma Z; Hao X; Wei G J Bacteriol; 2012 Mar; 194(5):1267-8. PubMed ID: 22328762 [TBL] [Abstract][Full Text] [Related]
13. Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ju W; Liu L; Fang L; Cui Y; Duan C; Wu H Ecotoxicol Environ Saf; 2019 Jan; 167():218-226. PubMed ID: 30342354 [TBL] [Abstract][Full Text] [Related]
14. Characterization of a copper-resistant symbiotic bacterium isolated from Medicago lupulina growing in mine tailings. Fan LM; Ma ZQ; Liang JQ; Li HF; Wang ET; Wei GH Bioresour Technol; 2011 Jan; 102(2):703-9. PubMed ID: 20843682 [TBL] [Abstract][Full Text] [Related]
15. Assessing genotypic diversity and symbiotic efficiency of five rhizobial legume interactions under cadmium stress for soil phytoremediation. Guefrachi I; Rejili M; Mahdhi M; Mars M Int J Phytoremediation; 2013; 15(10):938-51. PubMed ID: 23819287 [TBL] [Abstract][Full Text] [Related]
16. Contributions of Sinorhizobium meliloti Transcriptional Regulator DksA to Bacterial Growth and Efficient Symbiosis with Medicago sativa. Wippel K; Long SR J Bacteriol; 2016 May; 198(9):1374-83. PubMed ID: 26883825 [TBL] [Abstract][Full Text] [Related]
17. An omp gene enhances cell tolerance of Cu(II) in Sinorhizobium meliloti CCNWSX0020. Li Z; Lu M; Wei G World J Microbiol Biotechnol; 2013 Sep; 29(9):1655-60. PubMed ID: 23526229 [TBL] [Abstract][Full Text] [Related]
18. [Combined remediation effects of arbuscular mycorrhizal fungi-legumes-rhizobium symbiosis on PCBs contaminated soils]. Teng Y; Luo YM; Gao J; Li ZG Huan Jing Ke Xue; 2008 Oct; 29(10):2925-30. PubMed ID: 19143396 [TBL] [Abstract][Full Text] [Related]
19. Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis. Hao X; Taghavi S; Xie P; Orbach MJ; Alwathnani HA; Rensing C; Wei G Int J Phytoremediation; 2014; 16(2):179-202. PubMed ID: 24912209 [TBL] [Abstract][Full Text] [Related]
20. Exogenous application of signaling molecules to enhance the resistance of legume-rhizobium symbiosis in Pb/Cd-contaminated soils. Fang L; Ju W; Yang C; Jin X; Liu D; Li M; Yu J; Zhao W; Zhang C Environ Pollut; 2020 Oct; 265(Pt A):114744. PubMed ID: 32806415 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]