BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 28778909)

  • 1. The relationship between lymphangion chain length and maximum pressure generation established through in vivo imaging and computational modeling.
    Razavi MS; Nelson TS; Nepiyushchikh Z; Gleason RL; Dixon JB
    Am J Physiol Heart Circ Physiol; 2017 Dec; 313(6):H1249-H1260. PubMed ID: 28778909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lymphangion coordination minimally affects mean flow in lymphatic vessels.
    Venugopal AM; Stewart RH; Laine GA; Dongaonkar RM; Quick CM
    Am J Physiol Heart Circ Physiol; 2007 Aug; 293(2):H1183-9. PubMed ID: 17468331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Lymphatic Vascular System: Does Nonuniform Lymphangion Length Limit Flow-Rate?
    Bertram CD
    J Biomech Eng; 2024 Sep; 146(9):. PubMed ID: 38558115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pump efficacy in a two-dimensional, fluid-structure interaction model of a chain of contracting lymphangions.
    Elich H; Barrett A; Shankar V; Fogelson AL
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1941-1968. PubMed ID: 34275062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consequences of intravascular lymphatic valve properties: a study of contraction timing in a multi-lymphangion model.
    Bertram CD; Macaskill C; Davis MJ; Moore JE
    Am J Physiol Heart Circ Physiol; 2016 Apr; 310(7):H847-60. PubMed ID: 26747501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-order approximation for the pressure-flow relationship of spontaneously contracting lymphangions.
    Quick CM; Venugopal AM; Dongaonkar RM; Laine GA; Stewart RH
    Am J Physiol Heart Circ Physiol; 2008 May; 294(5):H2144-9. PubMed ID: 18326809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of a chain of collapsible contracting lymphangions with progressive valve closure.
    Bertram CD; Macaskill C; Moore JE
    J Biomech Eng; 2011 Jan; 133(1):011008. PubMed ID: 21186898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Network Scale Modeling of Lymph Transport and Its Effective Pumping Parameters.
    Jamalian S; Davis MJ; Zawieja DC; Moore JE
    PLoS One; 2016; 11(2):e0148384. PubMed ID: 26845031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical forces and lymphatic transport.
    Breslin JW
    Microvasc Res; 2014 Nov; 96():46-54. PubMed ID: 25107458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parameter sensitivity analysis of a lumped-parameter model of a chain of lymphangions in series.
    Jamalian S; Bertram CD; Richardson WJ; Moore JE
    Am J Physiol Heart Circ Physiol; 2013 Dec; 305(12):H1709-17. PubMed ID: 24124185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contraction of collecting lymphatics: organization of pressure-dependent rate for multiple lymphangions.
    Bertram CD; Macaskill C; Davis MJ; Moore JE
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1513-1532. PubMed ID: 29948540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lymphatic pumping: mechanics, mechanisms and malfunction.
    Scallan JP; Zawieja SD; Castorena-Gonzalez JA; Davis MJ
    J Physiol; 2016 Oct; 594(20):5749-5768. PubMed ID: 27219461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minimally invasive method for determining the effective lymphatic pumping pressure in rats using near-infrared imaging.
    Nelson TS; Akin RE; Weiler MJ; Kassis T; Kornuta JA; Dixon JB
    Am J Physiol Regul Integr Comp Physiol; 2014 Mar; 306(5):R281-90. PubMed ID: 24430884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of cytosolic Ca2+ in isolated contractile lymphatics.
    Souza-Smith FM; Kurtz KM; Breslin JW
    J Vis Exp; 2011 Dec; (58):. PubMed ID: 22214883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Passive pressure-diameter relationship and structural composition of rat mesenteric lymphangions.
    Rahbar E; Weimer J; Gibbs H; Yeh AT; Bertram CD; Davis MJ; Hill MA; Zawieja DC; Moore JE
    Lymphat Res Biol; 2012 Dec; 10(4):152-63. PubMed ID: 23145980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal postnodal lymphatic network structure that maximizes active propulsion of lymph.
    Venugopal AM; Quick CM; Laine GA; Stewart RH
    Am J Physiol Heart Circ Physiol; 2009 Feb; 296(2):H303-9. PubMed ID: 19028799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multiscale sliding filament model of lymphatic muscle pumping.
    Morris CJ; Zawieja DC; Moore JE
    Biomech Model Mechanobiol; 2021 Dec; 20(6):2179-2202. PubMed ID: 34476656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A lumped parameter model of mechanically mediated acute and long-term adaptations of contractility and geometry in lymphatics for characterization of lymphedema.
    Caulk AW; Dixon JB; Gleason RL
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1601-1618. PubMed ID: 27043026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entrainment of Lymphatic Contraction to Oscillatory Flow.
    Mukherjee A; Hooks J; Nepiyushchikh Z; Dixon JB
    Sci Rep; 2019 Apr; 9(1):5840. PubMed ID: 30967585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling flow in collecting lymphatic vessels: one-dimensional flow through a series of contractile elements.
    Macdonald AJ; Arkill KP; Tabor GR; McHale NG; Winlove CP
    Am J Physiol Heart Circ Physiol; 2008 Jul; 295(1):H305-13. PubMed ID: 18487438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.