BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28779158)

  • 21. Synthesis and application of isotopically labeled flavin nucleotides.
    Mishanina TV; Kohen A
    J Labelled Comp Radiopharm; 2015 Jul; 58(9):370-5. PubMed ID: 26149960
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proposed steady-state kinetic mechanism for Corynebacterium ammoniagenes FAD synthetase produced by Escherichia coli.
    Efimov I; Kuusk V; Zhang X; McIntire WS
    Biochemistry; 1998 Jul; 37(27):9716-23. PubMed ID: 9657684
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of a quaternary organization into dimer of trimers of Corynebacterium ammoniagenes FAD synthetase at the single-molecule level and at the in cell level.
    Marcuello C; Arilla-Luna S; Medina M; Lostao A
    Biochim Biophys Acta; 2013 Mar; 1834(3):665-76. PubMed ID: 23291469
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discovery of antimicrobial compounds targeting bacterial type FAD synthetases.
    Sebastián M; Anoz-Carbonell E; Gracia B; Cossio P; Aínsa JA; Lans I; Medina M
    J Enzyme Inhib Med Chem; 2018 Dec; 33(1):241-254. PubMed ID: 29258359
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The bifunctional flavokinase/flavin adenine dinucleotide synthetase from Streptomyces davawensis produces inactive flavin cofactors and is not involved in resistance to the antibiotic roseoflavin.
    Grill S; Busenbender S; Pfeiffer M; Köhler U; Mack M
    J Bacteriol; 2008 Mar; 190(5):1546-53. PubMed ID: 18156273
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The prokaryotic FAD synthetase family: a potential drug target.
    Serrano A; Ferreira P; Martínez-Júlvez M; Medina M
    Curr Pharm Des; 2013; 19(14):2637-48. PubMed ID: 23116401
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural Insight into the Working Mechanism of the FAD Synthetase from the Human Pathogen
    Kwon S
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834532
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC.
    Mack M; van Loon AP; Hohmann HP
    J Bacteriol; 1998 Feb; 180(4):950-5. PubMed ID: 9473052
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Involvement of riboflavin kinase expression in cellular sensitivity against cisplatin.
    Hirano G; Izumi H; Yasuniwa Y; Shimajiri S; Ke-Yong W; Sasagiri Y; Kusaba H; Matsumoto K; Hasegawa T; Akimoto M; Akashi K; Kohno K
    Int J Oncol; 2011 Apr; 38(4):893-902. PubMed ID: 21308351
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Saccharomyces cerevisiae mitochondria can synthesise FMN and FAD from externally added riboflavin and export them to the extramitochondrial phase.
    Pallotta ML; Brizio C; Fratianni A; De Virgilio C; Barile M; Passarella S
    FEBS Lett; 1998 May; 428(3):245-9. PubMed ID: 9654142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human riboflavin kinase: Species-specific traits in the biosynthesis of the FMN cofactor.
    Anoz-Carbonell E; Rivero M; Polo V; Velázquez-Campoy A; Medina M
    FASEB J; 2020 Aug; 34(8):10871-10886. PubMed ID: 32649804
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ligand binding-induced conformational changes in riboflavin kinase: structural basis for the ordered mechanism.
    Karthikeyan S; Zhou Q; Osterman AL; Zhang H
    Biochemistry; 2003 Nov; 42(43):12532-8. PubMed ID: 14580199
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flavin nucleotide metabolism in plants: monofunctional enzymes synthesize fad in plastids.
    Sandoval FJ; Zhang Y; Roje S
    J Biol Chem; 2008 Nov; 283(45):30890-900. PubMed ID: 18713732
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probable reaction mechanisms of flavokinase and FAD synthetase from rat liver.
    Yamada Y; Merrill AH; McCormick DB
    Arch Biochem Biophys; 1990 Apr; 278(1):125-30. PubMed ID: 2157358
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The occurrence of riboflavin kinase and FAD synthetase ensures FAD synthesis in tobacco mitochondria and maintenance of cellular redox status.
    Giancaspero TA; Locato V; de Pinto MC; De Gara L; Barile M
    FEBS J; 2009 Jan; 276(1):219-31. PubMed ID: 19049514
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nucleotide sequence of the FAD synthetase gene from Corynebacterium ammoniagenes and its expression in Escherichia coli.
    Nakagawa S; Igarashi A; Ohta T; Hagihara T; Fujio T; Aisaka K
    Biosci Biotechnol Biochem; 1995 Apr; 59(4):694-702. PubMed ID: 7772835
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Archaeal RibL: a new FAD synthetase that is air sensitive.
    Mashhadi Z; Xu H; Grochowski LL; White RH
    Biochemistry; 2010 Oct; 49(40):8748-55. PubMed ID: 20822113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Substrate specificity and variables affecting efficiency of mammalian flavin adenine dinucleotide synthetase.
    Bowers-Komro DM; Yamada Y; McCormick DB
    Biochemistry; 1989 Oct; 28(21):8439-46. PubMed ID: 2557903
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure and mechanism of a eukaryotic FMN adenylyltransferase.
    Huerta C; Borek D; Machius M; Grishin NV; Zhang H
    J Mol Biol; 2009 Jun; 389(2):388-400. PubMed ID: 19375431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic engineering of Ashbya gossypii for enhanced FAD production through promoter replacement of FMN1 gene.
    Patel MV; T S C
    Enzyme Microb Technol; 2020 Feb; 133():109455. PubMed ID: 31874696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.