These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 28779429)

  • 1. A Bayesian maximum entropy-based methodology for optimal spatiotemporal design of groundwater monitoring networks.
    Hosseini M; Kerachian R
    Environ Monit Assess; 2017 Sep; 189(9):433. PubMed ID: 28779429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic groundwater monitoring networks: a manageable method for reviewing sampling frequency.
    Moreau-Fournier MF; Daughney CJ
    J Environ Monit; 2012 Dec; 14(12):3129-36. PubMed ID: 23104002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial-temporal assessment and redesign of groundwater quality monitoring network: a case study.
    Owlia RR; Abrishamchi A; Tajrishy M
    Environ Monit Assess; 2011 Jan; 172(1-4):263-73. PubMed ID: 20180017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-perspective analysis and spatiotemporal mapping of air pollution monitoring data.
    Kolovos A; Skupin A; Jerrett M; Christakos G
    Environ Sci Technol; 2010 Sep; 44(17):6738-44. PubMed ID: 20687597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrate variability in groundwater of North Carolina using monitoring and private well data models.
    Messier KP; Kane E; Bolich R; Serre ML
    Environ Sci Technol; 2014 Sep; 48(18):10804-12. PubMed ID: 25148521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal design of monitoring networks for multiple groundwater quality parameters using a Kalman filter: application to the Irapuato-Valle aquifer.
    Júnez-Ferreira HE; Herrera GS; González-Hita L; Cardona A; Mora-Rodríguez J
    Environ Monit Assess; 2016 Jan; 188(1):39. PubMed ID: 26681183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal redesign of coastal groundwater quality monitoring networks under uncertainty: application of the theory of belief functions.
    Hosseini M; Kerachian R
    Environ Sci Pollut Res Int; 2023 May; 30(21):59701-59718. PubMed ID: 37012570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantile-based Bayesian maximum entropy approach for spatiotemporal modeling of ambient air quality levels.
    Yu HL; Wang CH
    Environ Sci Technol; 2013 Feb; 47(3):1416-24. PubMed ID: 23252912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redesigning and monitoring groundwater quality and quantity networks by using the entropy theory.
    Nazeri Tahroudi M; Khashei Siuki A; Ramezani Y
    Environ Monit Assess; 2019 Mar; 191(4):250. PubMed ID: 30919110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entropy-based air quality monitoring network optimization using NINP and Bayesian maximum entropy.
    Haddadi A; Nikoo MR; Nematollahi B; Al-Rawas G; Al-Wardy M; Toloo M; Gandomi AH
    Environ Sci Pollut Res Int; 2023 Jul; 30(35):84110-84125. PubMed ID: 37355508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the groundwater salinity monitoring network of the Tehran region: application of the discrete entropy theory.
    Masoumi F; Kerachian R
    Water Sci Technol; 2008; 58(4):765-71. PubMed ID: 18776610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of Groundwater Radon in North Carolina Using Land Use Regression and Bayesian Maximum Entropy.
    Messier KP; Campbell T; Bradley PJ; Serre ML
    Environ Sci Technol; 2015 Aug; 49(16):9817-25. PubMed ID: 26191968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of water table interpolation and groundwater storage volume using fuzzy computations.
    Masoumi Z; Rezaei A; Maleki J
    Environ Monit Assess; 2019 May; 191(6):401. PubMed ID: 31134353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal redesign of groundwater quality monitoring networks: a case study.
    Masoumi F; Kerachian R
    Environ Monit Assess; 2010 Feb; 161(1-4):247-57. PubMed ID: 19199064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Groundwater vulnerability assessment in agricultural areas using a modified DRASTIC model.
    Sadat-Noori M; Ebrahimi K
    Environ Monit Assess; 2016 Jan; 188(1):19. PubMed ID: 26650205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global optimal design of ground water monitoring network using embedded kriging.
    Dhar A; Datta B
    Ground Water; 2009; 47(6):806-15. PubMed ID: 19563421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of interpolation methods for the estimation of groundwater contamination in Andimeshk-Shush Plain, Southwest of Iran.
    Mirzaei R; Sakizadeh M
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2758-69. PubMed ID: 26446732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving Estimations of Spatial Distribution of Soil Respiration Using the Bayesian Maximum Entropy Algorithm and Soil Temperature as Auxiliary Data.
    Hu J; Zhou J; Zhou G; Luo Y; Xu X; Li P; Liang J
    PLoS One; 2016; 11(1):e0146589. PubMed ID: 26807579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geostatistics-based groundwater-level monitoring network design and its application to the Upper Floridan aquifer, USA.
    Bhat S; Motz LH; Pathak C; Kuebler L
    Environ Monit Assess; 2015 Jan; 187(1):4183. PubMed ID: 25433546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating address geocoding, land use regression, and spatiotemporal geostatistical estimation for groundwater tetrachloroethylene.
    Messier KP; Akita Y; Serre ML
    Environ Sci Technol; 2012 Mar; 46(5):2772-80. PubMed ID: 22264162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.