These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 28779523)

  • 1. Bottom-up processes influence the demography and life-cycle phenology of Hawaiian bird communities.
    Wolfe JD; Ralph CJ; Wiegardt A
    Ecology; 2017 Nov; 98(11):2885-2894. PubMed ID: 28779523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in timing, duration, and symmetry of molt of Hawaiian forest birds.
    Freed LA; Cann RL
    PLoS One; 2012; 7(1):e29834. PubMed ID: 22279547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functionally specialised birds respond flexibly to seasonal changes in fruit availability.
    Bender IMA; Kissling WD; Böhning-Gaese K; Hensen I; Kühn I; Wiegand T; Dehling DM; Schleuning M
    J Anim Ecol; 2017 Jul; 86(4):800-811. PubMed ID: 28493450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird.
    Visser ME; Holleman LJ; Gienapp P
    Oecologia; 2006 Feb; 147(1):164-72. PubMed ID: 16328547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of climate on the timing and rate of spring bird migration.
    Marra PP; Francis CM; Mulvihill RS; Moore FR
    Oecologia; 2005 Jan; 142(2):307-15. PubMed ID: 15480801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-Scale Range Collapse of Hawaiian Forest Birds under Climate Change and the Need for 21st Century Conservation Options [corrected].
    Fortini LB; Vorsino AE; Amidon FA; Paxton EH; Jacobi JD
    PLoS One; 2015; 10(10):e0140389. PubMed ID: 26509270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mismatch between birth date and vegetation phenology slows the demography of roe deer.
    Plard F; Gaillard JM; Coulson T; Hewison AJ; Delorme D; Warnant C; Bonenfant C
    PLoS Biol; 2014 Apr; 12(4):e1001828. PubMed ID: 24690936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Populations of migratory bird species that did not show a phenological response to climate change are declining.
    Møller AP; Rubolini D; Lehikoinen E
    Proc Natl Acad Sci U S A; 2008 Oct; 105(42):16195-200. PubMed ID: 18849475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introduced birds and the fate of hawaiian rainforests.
    Foster JT; Robinson SK
    Conserv Biol; 2007 Oct; 21(5):1248-57. PubMed ID: 17883490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fruit traits and temporal abundance shape plant-frugivore interaction networks in a seasonal tropical forest.
    Ramos-Robles M; Dáttilo W; Díaz-Castelazo C; Andresen E
    Naturwissenschaften; 2018 Apr; 105(3-4):29. PubMed ID: 29610984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precipitation and winter temperature predict long-term range-scale abundance changes in Western North American birds.
    Illán JG; Thomas CD; Jones JA; Wong WK; Shirley SM; Betts MG
    Glob Chang Biol; 2014 Nov; 20(11):3351-64. PubMed ID: 24863299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Will a warmer and wetter future cause extinction of native Hawaiian forest birds?
    Liao W; Elison Timm O; Zhang C; Atkinson CT; LaPointe DA; Samuel MD
    Glob Chang Biol; 2015 Dec; 21(12):4342-52. PubMed ID: 26111019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of climate and land-use change on species abundance in a Central European bird community.
    Lemoine N; Bauer HG; Peintinger M; Böhning-Gaese K
    Conserv Biol; 2007 Apr; 21(2):495-503. PubMed ID: 17391199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrasting cascades: insectivorous birds increase pine but not parasitic mistletoe growth.
    Mooney KA; Linhart YB
    J Anim Ecol; 2006 Mar; 75(2):350-7. PubMed ID: 16637988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between top-down and bottom-up control in marine food webs.
    Lynam CP; Llope M; Möllmann C; Helaouët P; Bayliss-Brown GA; Stenseth NC
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):1952-1957. PubMed ID: 28167770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From plankton to top predators: bottom-up control of a marine food web across four trophic levels.
    Frederiksen M; Edwards M; Richardson AJ; Halliday NC; Wanless S
    J Anim Ecol; 2006 Nov; 75(6):1259-68. PubMed ID: 17032358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate change in our backyards: the reshuffling of North America's winter bird communities.
    Princé K; Zuckerberg B
    Glob Chang Biol; 2015 Feb; 21(2):572-85. PubMed ID: 25322929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cascading effects of climate extremes on vertebrate fauna through changes to low-latitude tree flowering and fruiting phenology.
    Butt N; Seabrook L; Maron M; Law BS; Dawson TP; Syktus J; McAlpine CA
    Glob Chang Biol; 2015 Sep; 21(9):3267-77. PubMed ID: 25605302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climatic constraints on wintering bird distributions are modified by urbanization and weather.
    Zuckerberg B; Bonter DN; Hochachka WM; Koenig WD; DeGaetano AT; Dickinson JL
    J Anim Ecol; 2011 Mar; 80(2):403-13. PubMed ID: 21118200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of temperate bird-flower interactions as entangled mutualistic and antagonistic sub-networks: characterization at the network and species levels.
    Yoshikawa T; Isagi Y
    J Anim Ecol; 2014 May; 83(3):651-60. PubMed ID: 24372171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.