BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 28779535)

  • 1. Conserving threatened riparian ecosystems in the American West: Precipitation gradients and river networks drive genetic connectivity and diversity in a foundation riparian tree (Populus angustifolia).
    Bothwell HM; Cushman SA; Woolbright SA; Hersch-Green EI; Evans LM; Whitham TG; Allan GJ
    Mol Ecol; 2017 Oct; 26(19):5114-5132. PubMed ID: 28779535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Landscape genetic connectivity in a riparian foundation tree is jointly driven by climatic gradients and river networks.
    Cushman SA; Max T; Meneses N; Evans LM; Ferrier S; Honchak B; Whitham TG; Allan GJ
    Ecol Appl; 2014 Jul; 24(5):1000-14. PubMed ID: 25154093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative landscape genetics of two river frog species occurring at different elevations on Mount Kilimanjaro.
    Zancolli G; Rödel MO; Steffan-Dewenter I; Storfer A
    Mol Ecol; 2014 Oct; 23(20):4989-5002. PubMed ID: 25230017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying riparian climate corridors to inform climate adaptation planning.
    Krosby M; Theobald DM; Norheim R; McRae BH
    PLoS One; 2018; 13(11):e0205156. PubMed ID: 30427831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Connectivity in riparian plants: influence of vegetation type and habitat fragmentation overrides water flow.
    Hopley T; Byrne M
    Oecologia; 2018 Oct; 188(2):465-478. PubMed ID: 30039200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying keystone connectivity spots under climate change: Implications to conservation and management of riparian systems.
    López-Sánchez A; Sánchez I; Herráez F; Gülçin D; Tang T; Perea R; Velázquez J
    J Environ Manage; 2024 Feb; 351():119782. PubMed ID: 38100859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic data improves niche model discrimination and alters the direction and magnitude of climate change forecasts.
    Bothwell HM; Evans LM; Hersch-Green EI; Woolbright SA; Allan GJ; Whitham TG
    Ecol Appl; 2021 Apr; 31(3):e02254. PubMed ID: 33159398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metapopulation modelling of riparian tree species persistence in river networks under climate change.
    Van Looy K; Piffady J
    J Environ Manage; 2017 Nov; 202(Pt 2):437-446. PubMed ID: 27889364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shifting dominance of riparian Populus and Tamarix along gradients of flow alteration in western North American rivers.
    Merritt DM; Poff NL
    Ecol Appl; 2010 Jan; 20(1):135-52. PubMed ID: 20349836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rangewide landscape genetics of an endemic Pacific northwestern salamander.
    Trumbo DR; Spear SF; Baumsteiger J; Storfer A
    Mol Ecol; 2013 Mar; 22(5):1250-66. PubMed ID: 23293948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geographical barriers and climate influence demographic history in narrowleaf cottonwoods.
    Evans LM; Allan GJ; DiFazio SP; Slavov GT; Wilder JA; Floate KD; Rood SB; Whitham TG
    Heredity (Edinb); 2015 Apr; 114(4):387-96. PubMed ID: 25585921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replicated landscape genetic and network analyses reveal wide variation in functional connectivity for American pikas.
    Castillo JA; Epps CW; Jeffress MR; Ray C; Rodhouse TJ; Schwalm D
    Ecol Appl; 2016 Sep; 26(6):1660-1676. PubMed ID: 27755691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Landscape genetics of the tropical willow Salix humboldtiana: influence of climate, salinity, and orography in an altitudinal gradient.
    Hernández-Leal MS; Suárez-Atilano M; Nicasio-Arzeta S; Piñero D; González-Rodríguez A
    Am J Bot; 2022 Mar; 109(3):456-469. PubMed ID: 35191023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene Flow and Genetic Variation Explain Signatures of Selection across a Climate Gradient in Two Riparian Species.
    Hopley T; Byrne M
    Genes (Basel); 2019 Jul; 10(8):. PubMed ID: 31370268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating riparian solutions to multiple stressor problems in river ecosystems - A conceptual study.
    Feld CK; Fernandes MR; Ferreira MT; Hering D; Ormerod SJ; Venohr M; Gutiérrez-Cánovas C
    Water Res; 2018 Aug; 139():381-394. PubMed ID: 29673937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Riparian areas as a conservation priority under climate change.
    Zhang X; Ci X; Hu J; Bai Y; Thornhill AH; Conran JG; Li J
    Sci Total Environ; 2023 Feb; 858(Pt 2):159879. PubMed ID: 36334670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate variables explain neutral and adaptive variation within salmonid metapopulations: the importance of replication in landscape genetics.
    Hand BK; Muhlfeld CC; Wade AA; Kovach RP; Whited DC; Narum SR; Matala AP; Ackerman MW; Garner BA; Kimball JS; Stanford JA; Luikart G
    Mol Ecol; 2016 Feb; 25(3):689-705. PubMed ID: 26677031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Optimizing vegetation pattern for the riparian buffer zone along the lower Yellow River based on slope hydrological connectivity].
    Cao ZH; Zhao QH; Zuo XY; Ding SY; Zhang YF; Xui SS; Wu DX
    Ying Yong Sheng Tai Xue Bao; 2018 Mar; 29(3):739-747. PubMed ID: 29722214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical environmental conditions determine ubiquitous spatial differentiation of standing plants and seedbanks in Neotropical riparian dry forests.
    De León Ibarra A; Mariano NA; Sorani V; Flores-Franco G; Rendón Alquicira E; Wehncke EV
    PLoS One; 2019; 14(3):e0212185. PubMed ID: 30865660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Maintaining mechanisms of riparian invertebrate biodiversity: A review].
    Wang KH; Yuan XZ; Zhang GX; Wu SK; Liu SS; Zhang MJ
    Ying Yong Sheng Tai Xue Bao; 2020 Mar; 31(3):1043-1054. PubMed ID: 32538002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.