These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 2877959)

  • 1. Coralline hydroxyapatite bone-graft substitutes in a canine metaphyseal defect model. Radiographic-histometric correlation.
    Sartoris DJ; Holmes RE; Bucholz RW; Mooney V; Resnick D
    Invest Radiol; 1986 Nov; 21(11):851-7. PubMed ID: 2877959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coralline hydroxyapatite bone graft substitutes in a canine metaphyseal defect model: radiographic-biomechanical correlation.
    Sartoris DJ; Holmes RE; Tencer AF; Mooney V; Resnick D
    Skeletal Radiol; 1986; 15(8):635-41. PubMed ID: 3810188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coralline hydroxyapatite bone-graft substitutes in a canine diaphyseal defect model. Radiographic-histometric correlation.
    Sartoris DJ; Holmes RE; Bucholz RW; Mooney V; Resnick D
    Invest Radiol; 1987 Jul; 22(7):590-6. PubMed ID: 3623863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coralline hydroxyapatite bone graft substitutes in a canine diaphyseal defect model: radiographic features of failed and successful union.
    Sartoris DJ; Holmes RE; Bucholz RW; Resnick D
    Skeletal Radiol; 1986; 15(8):642-7. PubMed ID: 3810189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous hydroxyapatite as a bone-graft substitute in metaphyseal defects. A histometric study.
    Holmes RE; Bucholz RW; Mooney V
    J Bone Joint Surg Am; 1986 Jul; 68(6):904-11. PubMed ID: 3015975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical and bone ingrowth properties of a polymer-coated, porous, synthetic, coralline hydroxyapatite bone-graft material.
    Tencer AF; Woodard PL; Swenson J; Brown KL
    Ann N Y Acad Sci; 1988; 523():157-72. PubMed ID: 2898222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coralline hydroxyapatite bone graft substitutes. Evaluation of bone density with dual energy x-ray absorptiometry.
    Preidler KW; Lemperle SM; Holmes RE; Calhoun CJ; Shors EC; Brossmann J; Sartoris DJ
    Invest Radiol; 1996 Nov; 31(11):716-23. PubMed ID: 8915753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coralline hydroxyapatite bone graft substitutes: preliminary report of radiographic evaluation.
    Sartoris DJ; Gershuni DH; Akeson WH; Holmes RE; Resnick D
    Radiology; 1986 Apr; 159(1):133-7. PubMed ID: 3513246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone ingrowth and mechanical properties of coralline hydroxyapatite 1 yr after implantation.
    Martin RB; Chapman MW; Sharkey NA; Zissimos SL; Bay B; Shors EC
    Biomaterials; 1993 Apr; 14(5):341-8. PubMed ID: 8389612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histological and radiographic evaluations of demineralized bone matrix and coralline hydroxyapatite in the rabbit tibia.
    Zhukauskas R; Dodds RA; Hartill C; Arola T; Cobb RR; Fox C
    J Biomater Appl; 2010 Mar; 24(7):639-56. PubMed ID: 19581323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of bovine-derived bone protein with a natural coral carrier as a bone-graft substitute in a canine segmental defect model.
    Sciadini MF; Dawson JM; Johnson KD
    J Orthop Res; 1997 Nov; 15(6):844-57. PubMed ID: 9497809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revision, without cement, of aseptically loose, cemented total hip prostheses. Quantitative comparison of the effects of four types of medullary treatment on bone ingrowth in a canine model.
    Turner TM; Urban RM; Sumner DR; Galante JO
    J Bone Joint Surg Am; 1993 Jun; 75(6):845-62. PubMed ID: 8314825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Long-term radiologic evolution of coral implanted in cancellous bone of the lower limb. Madreporic coral versus coral hydroxyapatite].
    de la Caffinière JY; Viehweger E; Worcel A
    Rev Chir Orthop Reparatrice Appar Mot; 1998 Oct; 84(6):501-7. PubMed ID: 9846323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The rate of vascularization of coralline hydroxyapatite.
    Grenga TE; Zins JE; Bauer TW
    Plast Reconstr Surg; 1989 Aug; 84(2):245-9. PubMed ID: 2473482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone ingrowth into polymer coated porous synthetic coralline hydroxyapatite.
    Tencer AF; Woodard PL; Swenson J; Brown KL
    J Orthop Res; 1987; 5(2):275-82. PubMed ID: 3572596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyapatite and tricalcium phosphate bone graft substitutes.
    Bucholz RW; Carlton A; Holmes RE
    Orthop Clin North Am; 1987 Apr; 18(2):323-34. PubMed ID: 3561978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of autogenous cancellous bone grafting and extracorporeal shock wave therapy on osteotomy healing in the tibial tuberosity advancement procedure in dogs. Radiographic densitometric evaluation.
    Barnes K; Lanz O; Werre S; Clapp K; Gilley R
    Vet Comp Orthop Traumatol; 2015; 28(3):207-14. PubMed ID: 25899991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of coral as a bone graft substitute.
    Guillemin G; Patat JL; Fournie J; Chetail M
    J Biomed Mater Res; 1987 May; 21(5):557-67. PubMed ID: 2884221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coralline hydroxyapatite bone graft substitutes: radiographic evaluation.
    Sartoris DJ; Holmes RE; Resnick D
    J Foot Surg; 1992; 31(3):301-13. PubMed ID: 1619233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porous hydroxyapatite as a bone graft substitute in cranial reconstruction: a histometric study.
    Holmes RE; Hagler HK
    Plast Reconstr Surg; 1988 May; 81(5):662-71. PubMed ID: 2834761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.