These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 2877959)

  • 21. A coralline hydroxyapatite bone graft substitute. Preliminary report.
    Holmes R; Mooney V; Bucholz R; Tencer A
    Clin Orthop Relat Res; 1984 Sep; (188):252-62. PubMed ID: 6147218
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Porous hydroxyapatite as a bone graft substitute in maxillary augmentation. An histometric study.
    Holmes R; Hagler H
    J Craniomaxillofac Surg; 1988 Jul; 16(5):199-205. PubMed ID: 2900254
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Porous hydroxyapatite as a bone graft substitute in diaphyseal defects: a histometric study.
    Holmes RE; Bucholz RW; Mooney V
    J Orthop Res; 1987; 5(1):114-21. PubMed ID: 3029358
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Porous hydroxylapatite as a bone graft substitute in mandibular contour augmentation: a histometric study.
    Holmes RE; Hagler HK
    J Oral Maxillofac Surg; 1987 May; 45(5):421-9. PubMed ID: 3033188
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of bone ingrowth on the strength and non-invasive assessment of a coralline hydroxyapatite material.
    Martin RB; Chapman MW; Holmes RE; Sartoris DJ; Shors EC; Gordon JE; Heitter DO; Sharkey NA; Zissimos AG
    Biomaterials; 1989 Sep; 10(7):481-8. PubMed ID: 2804236
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative study of porous hydroxyapatite and tricalcium phosphate as bone substitute.
    Shimazaki K; Mooney V
    J Orthop Res; 1985; 3(3):301-10. PubMed ID: 2411894
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bone formation in coralline hydroxyapatite. Effects of pore size studied in rabbits.
    Kühne JH; Bartl R; Frisch B; Hammer C; Jansson V; Zimmer M
    Acta Orthop Scand; 1994 Jun; 65(3):246-52. PubMed ID: 8042473
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential effects of bone graft substitutes on regeneration of bone marrow.
    Schwartz Z; Doukarsky-Marx T; Nasatzky E; Goultschin J; Ranly DM; Greenspan DC; Sela J; Boyan BD
    Clin Oral Implants Res; 2008 Dec; 19(12):1233-45. PubMed ID: 19040438
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo evaluation of coralline hydroxyapatite and direct current electrical stimulation in lumbar spinal fusion.
    Bozic KJ; Glazer PA; Zurakowski D; Simon BJ; Lipson SJ; Hayes WC
    Spine (Phila Pa 1976); 1999 Oct; 24(20):2127-33. PubMed ID: 10543011
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Does coralline hydroxyapatite conduct fusion in instrumented posterior spine fusion?
    Korovessis P; Repanti M; Koureas G
    Stud Health Technol Inform; 2002; 91():109-13. PubMed ID: 15457705
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Repair of large cortical defects with block coralline hydroxyapatite.
    Bay BK; Martin RB; Sharkey NA; Chapman MW
    Bone; 1993; 14(3):225-30. PubMed ID: 8363861
    [No Abstract]   [Full Text] [Related]  

  • 32. In vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model.
    Stubbs D; Deakin M; Chapman-Sheath P; Bruce W; Debes J; Gillies RM; Walsh WR
    Biomaterials; 2004 Sep; 25(20):5037-44. PubMed ID: 15109866
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coralline hydroxyapatite granules inferior to morselized allograft around uncemented porous Ti implants: unchanged fixation by addition of concentrated autologous bone marrow aspirate.
    Baas J; Svaneby D; Jensen TB; Elmengaard B; Bechtold J; Soballe K
    J Biomed Mater Res A; 2011 Oct; 99(1):9-15. PubMed ID: 21793192
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydroxyapatite as a bone substitute.
    Mahan KT; Carey MJ
    J Am Podiatr Med Assoc; 1999 Aug; 89(8):392-7. PubMed ID: 10466291
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The research of degradability of a novel biodegradable coralline hydroxyapatite after implanted into rabbit.
    Ning Y; Wei T; Defu C; Yonggang X; Da H; Dafu C; Lei S; Zhizhong G
    J Biomed Mater Res A; 2009 Mar; 88(3):741-6. PubMed ID: 18357581
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The induction of bone by an osteogenic protein and the conduction of bone by porous hydroxyapatite: a laboratory study in the rabbit.
    Miller TA; Ishida K; Kobayashi M; Wollman JS; Turk AE; Holmes RE
    Plast Reconstr Surg; 1991 Jan; 87(1):87-95. PubMed ID: 1845782
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coralline hydroxyapatite bone graft substitute in hindfoot surgery.
    Coughlin MJ; Grimes JS; Kennedy MP
    Foot Ankle Int; 2006 Jan; 27(1):19-22. PubMed ID: 16442024
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bone regeneration within a coralline hydroxyapatite implant.
    Holmes RE
    Plast Reconstr Surg; 1979 May; 63(5):626-33. PubMed ID: 432330
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The possible use of coralline hydroxyapatite as a bone implant.
    Light M; Kanat IO
    J Foot Surg; 1991; 30(5):472-6. PubMed ID: 1783757
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydroxyapatite-glass composite as a bone substitute in large metaphyseal cavities in rabbits.
    Suominen EA; Aho AJ; Juhanoja J; Yli-Urpo A
    Int Orthop; 1995; 19(3):167-73. PubMed ID: 7558493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.