BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28779984)

  • 1. Comparing the acidities of aqueous, frozen, and freeze-dried phosphate buffers: Is there a "pH memory" effect?
    Vetráková Ľ; Vykoukal V; Heger D
    Int J Pharm; 2017 Sep; 530(1-2):316-325. PubMed ID: 28779984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycine crystallization in frozen and freeze-dried systems: effect of pH and buffer concentration.
    Varshney DB; Kumar S; Shalaev EY; Sundaramurthi P; Kang SW; Gatlin LA; Suryanarayanan R
    Pharm Res; 2007 Mar; 24(3):593-604. PubMed ID: 17245648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of freeze-drying on ionization of sulfonephthalein probe molecules in trehalose-citrate systems.
    Govindarajan R; Chatterjee K; Gatlin L; Suryanarayanan R; Shalaev EY
    J Pharm Sci; 2006 Jul; 95(7):1498-510. PubMed ID: 16721795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Making good's buffers good for freezing: The acidity changes and their elimination via mixing with sodium phosphate.
    Veselý L; Susrisweta B; Heger D
    Int J Pharm; 2021 Jan; 593():120128. PubMed ID: 33271311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating freezing-induced acidity changes in citrate buffers.
    Susrisweta B; Veselý L; Štůsek R; Hauptmann A; Loerting T; Heger D
    Int J Pharm; 2023 Aug; 643():123211. PubMed ID: 37422143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Phosphate Buffered Saline (PBS) in Frozen State and after Freeze-Drying.
    Thorat AA; Suryanarayanan R
    Pharm Res; 2019 May; 36(7):98. PubMed ID: 31087169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lyophilization-induced protein denaturation in phosphate buffer systems: monomeric and tetrameric beta-galactosidase.
    Pikal-Cleland KA; Carpenter JF
    J Pharm Sci; 2001 Sep; 90(9):1255-68. PubMed ID: 11745778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Formulation and Process Parameters on the Disproportionation of Indomethacin Sodium in Buffered Lyophilized Formulations.
    Koranne S; Thakral S; Suryanarayanan R
    Pharm Res; 2018 Jan; 35(1):21. PubMed ID: 29305664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of buffer composition and processing conditions on aggregation of bovine IgG during freeze-drying.
    Sarciaux JM; Mansour S; Hageman MJ; Nail SL
    J Pharm Sci; 1999 Dec; 88(12):1354-61. PubMed ID: 10585234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the crystallization propensity of carboxylic acid buffers in frozen systems--relevance to freeze-drying.
    Sundaramurthi P; Suryanarayanan R
    J Pharm Sci; 2011 Apr; 100(4):1288-93. PubMed ID: 24081466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of solid-state acidity on the decomposition of sucrose in amorphous systems II (effect of buffer).
    Alkhamis KA
    Drug Dev Ind Pharm; 2009 Apr; 35(4):408-16. PubMed ID: 19016102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of glycine on pH changes and protein stability during freeze-thawing in phosphate buffer systems.
    Pikal-Cleland KA; Cleland JL; Anchordoquy TJ; Carpenter JF
    J Pharm Sci; 2002 Sep; 91(9):1969-79. PubMed ID: 12210044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of protein inactivation during freezing by minimizing pH changes using ionic cryoprotectants.
    Krausková Ľ; Procházková J; Klašková M; Filipová L; Chaloupková R; Malý S; Damborský J; Heger D
    Int J Pharm; 2016 Jul; 509(1-2):41-49. PubMed ID: 27224008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of initial buffer composition on pH changes during far-from-equilibrium freezing of sodium phosphate buffer solutions.
    Gómez G; Pikal MJ; Rodríguez-Hornedo N
    Pharm Res; 2001 Jan; 18(1):90-7. PubMed ID: 11336359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solute crystallization in mannitol-glycine systems--implications on protein stabilization in freeze-dried formulations.
    Pyne A; Chatterjee K; Suryanarayanan R
    J Pharm Sci; 2003 Nov; 92(11):2272-83. PubMed ID: 14603512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermophysical properties of carboxylic and amino acid buffers at subzero temperatures: relevance to frozen state stabilization.
    Sundaramurthi P; Suryanarayanan R
    J Phys Chem B; 2011 Jun; 115(21):7154-64. PubMed ID: 21561117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of cryoprotectants on freezing, lyophilization, and storage of lyophilized recombinant alpha 1-antitrypsin formulations.
    Vemuri S; Yu CD; Roosdorp N
    PDA J Pharm Sci Technol; 1994; 48(5):241-6. PubMed ID: 8000898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation between chemical reactivity and the Hammett acidity function in amorphous solids using inversion of sucrose as a model reaction.
    Chatterjee K; Shalaev EY; Suryanarayanan R; Govindarajan R
    J Pharm Sci; 2008 Jan; 97(1):274-86. PubMed ID: 17828730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calorimetric and diffractometric evidence for the sequential crystallization of buffer components and the consequential pH swing in frozen solutions.
    Sundaramurthi P; Shalaev E; Suryanarayanan R
    J Phys Chem B; 2010 Apr; 114(14):4915-23. PubMed ID: 20302316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freeze-thaw stability of aluminum oxide nanoparticles.
    Trenkenschuh E; Friess W
    Int J Pharm; 2021 Sep; 606():120932. PubMed ID: 34310956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.