BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28780230)

  • 1. Self-assembly, phase behaviour and structural behaviour as observed by scattering for classical and non-classical microemulsions.
    Prévost S; Gradzielski M; Zemb T
    Adv Colloid Interface Sci; 2017 Sep; 247():374-396. PubMed ID: 28780230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesoscopic modelling of frustration in microemulsions.
    Duvail M; Dufrêche JF; Arleth L; Zemb T
    Phys Chem Chem Phys; 2013 May; 15(19):7133-41. PubMed ID: 23552459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of small ionic amphiphilic additives on reverse microemulsion morphology.
    Hatzopoulos MH; James C; Rogers S; Grillo I; Dowding PJ; Eastoe J
    J Colloid Interface Sci; 2014 May; 421():56-63. PubMed ID: 24594032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of surfactant/cosurfactant synergism impact on ibuprofen solubilization capacity and drug release characteristics of nonionic microemulsions.
    Djekic L; Primorac M; Filipic S; Agbaba D
    Int J Pharm; 2012 Aug; 433(1-2):25-33. PubMed ID: 22579578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small-angle neutron scattering study of a dense microemulsion system formed with an ionic liquid.
    Kang T; Qian S; Smith GS; Do C; Heller WT
    Soft Matter; 2017 Oct; 13(39):7154-7160. PubMed ID: 28895963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microemulsions as colloidal vehicle systems for dermal drug delivery. Part IV: Investigation of microemulsion systems based on a eutectic mixture of lidocaine and prilocaine as the colloidal phase by dynamic light scattering.
    Shukla A; Krause A; Neubert RH
    J Pharm Pharmacol; 2003 Jun; 55(6):741-8. PubMed ID: 12841933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of surfactant films in water-in-CO2 microemulsions obtained by small-angle neutron scattering.
    Yan C; Sagisaka M; James C; Rogers S; Alexander S; Eastoe J
    J Colloid Interface Sci; 2014 Dec; 435():112-8. PubMed ID: 25233224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Microemulsions: Formulation Based on Knowledge of Their Mesostructure.
    Gradzielski M; Duvail M; de Molina PM; Simon M; Talmon Y; Zemb T
    Chem Rev; 2021 May; 121(10):5671-5740. PubMed ID: 33955731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase behavior and microstructure of microemulsions with a room-temperature ionic liquid as the polar phase.
    Atkin R; Warr GG
    J Phys Chem B; 2007 Aug; 111(31):9309-16. PubMed ID: 17636975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of microemulsions containing orange oil with water and propylene glycol as hydrophilic components.
    Yotsawimonwat S; Okonoki S; Krauel K; Sirithunyalug J; Sirithunyalug B; Rades T
    Pharmazie; 2006 Nov; 61(11):920-6. PubMed ID: 17152984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of alpha-lactalbumin on aerosol-OT phase structures in oil/water mixtures.
    Kim JY; Dungan SR
    J Phys Chem B; 2008 May; 112(17):5381-92. PubMed ID: 18410160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting for thermodynamic instabilities in water/oil/surfactant microemulsions: a mesoscopic modelling approach.
    Duvail M; Arleth L; Zemb T; Dufrêche JF
    J Chem Phys; 2014 Apr; 140(16):164711. PubMed ID: 24784303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scattering form factors for self-assembled network junctions.
    Foster T; Safran SA; Sottmann T; Strey R
    J Chem Phys; 2007 Nov; 127(20):204711. PubMed ID: 18052450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic liquid tunes microemulsion curvature.
    Liu L; Bauduin P; Zemb T; Eastoe J; Hao J
    Langmuir; 2009 Feb; 25(4):2055-9. PubMed ID: 19161325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small-angle-neutron-scattering from giant water-in-oil microemulsion droplets. II. Polymer-decorated droplets in a quaternary system.
    Foster T; Sottmann T; Schweins R; Strey R
    J Chem Phys; 2008 Feb; 128(6):064902. PubMed ID: 18282069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward surfactant-free and water-free microemulsions.
    Fischer V; Marcus J; Touraud D; Diat O; Kunz W
    J Colloid Interface Sci; 2015 Sep; 453():186-193. PubMed ID: 25985422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatible microemulsions based on limonene: formulation, structure, and applications.
    Papadimitriou V; Pispas S; Syriou S; Pournara A; Zoumpanioti M; Sotiroudis TG; Xenakis A
    Langmuir; 2008 Apr; 24(7):3380-6. PubMed ID: 18303927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using an amphiphilic diblock copolymer to understand the shear-induced structural transformation of bicontinuous microemulsions.
    Fischer J; Porcar L; Cabral JT; Sottmann T
    J Colloid Interface Sci; 2024 Oct; 671():124-133. PubMed ID: 38795533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic microemulsions based on magnetic ionic liquids.
    Klee A; Prevost S; Kunz W; Schweins R; Kiefer K; Gradzielski M
    Phys Chem Chem Phys; 2012 Nov; 14(44):15355-60. PubMed ID: 23060241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small-angle scattering and morphologies of ultra-flexible microemulsions.
    Prevost S; Lopian T; Pleines M; Diat O; Zemb T
    J Appl Crystallogr; 2016 Dec; 49(Pt 6):2063-2072. PubMed ID: 27980512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.