BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28780230)

  • 41. The Nanostructure Studies of Surfactant-Free-Microemulsions in Fragrance Tinctures.
    Bošković P; Sokol V; Touraud D; Prkić A; Giljanović J
    Acta Chim Slov; 2016; 63(1):138-43. PubMed ID: 26970798
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The influence of cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 caprylic/capric glycerides.
    Djekic L; Primorac M
    Int J Pharm; 2008 Mar; 352(1-2):231-9. PubMed ID: 18068919
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Solubilisation of triolein by microemulsions containing C12E4/hexadecane/water: equilibrium and dynamics.
    Garrett PR; Carr D; Giles D; Pierre-Louis G; Staples E; Miller CA; Chen BH
    J Colloid Interface Sci; 2008 Sep; 325(2):508-15. PubMed ID: 18597762
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [emim][etSO4] as the polar phase in low-temperature-stable microemulsions.
    Harrar A; Zech O; Hartl R; Bauduin P; Zemb T; Kunz W
    Langmuir; 2011 Mar; 27(5):1635-42. PubMed ID: 21226501
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nonionic surfactants with linear and branched hydrocarbon tails: compositional analysis, phase behavior, and film properties in bicontinuous microemulsions.
    Frank C; Frielinghaus H; Allgaier J; Prast H
    Langmuir; 2007 Jun; 23(12):6526-35. PubMed ID: 17489617
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Formation of microemulsions for using as cosmeceutical delivery systems: effects of various components and characteristics of some formulations.
    Wuttikul K; Boonme P
    Drug Deliv Transl Res; 2016 Jun; 6(3):254-62. PubMed ID: 26813671
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Formation and characterization of ordered bicontinuous microemulsions.
    Kogan A; Shalev DE; Raviv U; Aserin A; Garti N
    J Phys Chem B; 2009 Aug; 113(31):10669-78. PubMed ID: 19719271
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Formation, thermodynamic properties, microstructures and antimicrobial activity of mixed cationic/non-ionic surfactant microemulsions with isopropyl myristate as oil.
    Bardhan S; Kundu K; Das S; Poddar M; Saha SK; Paul BK
    J Colloid Interface Sci; 2014 Sep; 430():129-39. PubMed ID: 24998065
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Liquid interface functionalized by an ion extractant: the case of Winsor III microemulsions.
    Bauer C; Bauduin P; Diat O; Zemb T
    Langmuir; 2011 Mar; 27(5):1653-61. PubMed ID: 21190344
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microemulsions as reaction media for the synthesis of mixed oxide nanoparticles: relationships between microemulsion structure, reactivity, and nanoparticle characteristics.
    Aubery C; Solans C; Prevost S; Gradzielski M; Sanchez-Dominguez M
    Langmuir; 2013 Feb; 29(6):1779-89. PubMed ID: 23305179
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Model biological microemulsions: Part I--Phase behaviour and physicochemical properties of cholesteryl benzoate and sodium deoxycholate contained microemulsions.
    Das ML; Bhattacharya PK; Moulik SP
    Indian J Biochem Biophys; 1989 Feb; 26(1):24-9. PubMed ID: 2777310
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A step toward the development of high-temperature stable ionic liquid-in-oil microemulsions containing double-chain anionic surface active ionic liquid.
    Rao VG; Banerjee C; Ghosh S; Mandal S; Kuchlyan J; Sarkar N
    J Phys Chem B; 2013 Jun; 117(24):7472-80. PubMed ID: 23697660
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effect of changing the microstructure of a microemulsion on chemical reactivity.
    Cabaleiro-Lago C; García-Río L; Hervella P
    Langmuir; 2007 Sep; 23(19):9586-95. PubMed ID: 17696554
    [TBL] [Abstract][Full Text] [Related]  

  • 54. alpha-lactalbumin-AOT charge interactions tune phase structures in isooctane/brine mixtures.
    Kim JY; Dungan SR
    Langmuir; 2009 Jul; 25(14):7918-26. PubMed ID: 19594179
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Physicochemical behaviors of cationic gemini surfactant (14-4-14) based microheterogeneous assemblies.
    Das S; Mukherjee I; Paul BK; Ghosh S
    Langmuir; 2014 Oct; 30(42):12483-93. PubMed ID: 25241843
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structure, interfacial film properties, and thermal fluctuations of microemulsions as seen by scattering experiments.
    Oberdisse J; Hellweg T
    Adv Colloid Interface Sci; 2017 Sep; 247():354-362. PubMed ID: 28751064
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Formation of flavor oil microemulsions, nanoemulsions and emulsions: influence of composition and preparation method.
    Rao J; McClements DJ
    J Agric Food Chem; 2011 May; 59(9):5026-35. PubMed ID: 21410259
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Soret coefficient in nonionic microemulsions: concentration and structure dependence.
    Naumann P; Becker N; Datta S; Sottmann T; Wiegand S
    J Phys Chem B; 2013 May; 117(18):5614-22. PubMed ID: 23534821
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Formulation and characterization of microemulsions based on mixed nonionic surfactants and peppermint oil.
    Fanun M
    J Colloid Interface Sci; 2010 Mar; 343(2):496-503. PubMed ID: 20038469
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Studies on the kinetics of killing and the proposed mechanism of action of microemulsions against fungi.
    Al-Adham IS; Ashour H; Al-Kaissi E; Khalil E; Kierans M; Collier PJ
    Int J Pharm; 2013 Sep; 454(1):226-32. PubMed ID: 23830945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.