BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 28780311)

  • 1. Mechanical energy dissipation in natural ceramic composites.
    Mayer G
    J Mech Behav Biomed Mater; 2017 Dec; 76():21-29. PubMed ID: 28780311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New toughening concepts for ceramic composites from rigid natural materials.
    Mayer G
    J Mech Behav Biomed Mater; 2011 Jul; 4(5):670-81. PubMed ID: 21565715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The weak interfaces within tough natural composites: experiments on three types of nacre.
    Khayer Dastjerdi A; Rabiei R; Barthelat F
    J Mech Behav Biomed Mater; 2013 Mar; 19():50-60. PubMed ID: 23084045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibrillar organic phases and their roles in rigid biological composites.
    Arey BW; Park JJ; Mayer G
    J Mech Behav Biomed Mater; 2015 Jun; 46():343-9. PubMed ID: 25791572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crack tip fracture toughness of base glasses for dental restoration glass-ceramics using crack opening displacements.
    Deubener J; Höland M; Höland W; Janakiraman N; Rheinberger VM
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1291-8. PubMed ID: 21783138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of Failure Mechanisms in Ceramic Composites as Potential Railway Brake Disc Materials.
    Kim J
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33203101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of modulus mismatch on crack propagation and toughness enhancement in bioinspired composites.
    Murali P; Bhandakkar TK; Cheah WL; Jhon MH; Gao H; Ahluwalia R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):015102. PubMed ID: 21867242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tough, bio-inspired hybrid materials.
    Munch E; Launey ME; Alsem DH; Saiz E; Tomsia AP; Ritchie RO
    Science; 2008 Dec; 322(5907):1516-20. PubMed ID: 19056979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lamellar architectures in stiff biomaterials may not always be templates for enhancing toughness in composites.
    Monn MA; Vijaykumar K; Kochiyama S; Kesari H
    Nat Commun; 2020 Jan; 11(1):373. PubMed ID: 31953388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nature-Inspired Nacre-Like Composites Combining Human Tooth-Matching Elasticity and Hardness with Exceptional Damage Tolerance.
    Tan G; Zhang J; Zheng L; Jiao D; Liu Z; Zhang Z; Ritchie RO
    Adv Mater; 2019 Dec; 31(52):e1904603. PubMed ID: 31713926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of processing induced particle alignment on the fracture toughness and fracture behavior of multiphase dental ceramics.
    Gonzaga CC; Okada CY; Cesar PF; Miranda WG; Yoshimura HN
    Dent Mater; 2009 Nov; 25(11):1293-301. PubMed ID: 19570570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical fatigue degradation of ceramics versus resin composites for dental restorations.
    Belli R; Geinzer E; Muschweck A; Petschelt A; Lohbauer U
    Dent Mater; 2014 Apr; 30(4):424-32. PubMed ID: 24553249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for the fracture toughness of the shell of the conch Strombus gigas.
    Kamat S; Su X; Ballarini R; Heuer AH
    Nature; 2000 Jun; 405(6790):1036-40. PubMed ID: 10890440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toughening materials: enhancing resistance to fracture.
    Ritchie RO
    Philos Trans A Math Phys Eng Sci; 2021 Aug; 379(2203):20200437. PubMed ID: 34148425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics.
    Guazzato M; Albakry M; Ringer SP; Swain MV
    Dent Mater; 2004 Jun; 20(5):441-8. PubMed ID: 15081550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. R-curve behavior and micromechanisms of fracture in resin based dental restorative composites.
    Shah MB; Ferracane JL; Kruzic JJ
    J Mech Behav Biomed Mater; 2009 Oct; 2(5):502-11. PubMed ID: 19627857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties of polymer-infiltrated-ceramic (sodium aluminum silicate) composites for dental restoration.
    Cui B; Li J; Wang H; Lin Y; Shen Y; Li M; Deng X; Nan C
    J Dent; 2017 Jul; 62():91-97. PubMed ID: 28526443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From brittle to ductile fracture of bone.
    Peterlik H; Roschger P; Klaushofer K; Fratzl P
    Nat Mater; 2006 Jan; 5(1):52-5. PubMed ID: 16341218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards long lasting zirconia-based composites for dental implants: Transformation induced plasticity and its consequence on ceramic reliability.
    Reveron H; Fornabaio M; Palmero P; Fürderer T; Adolfsson E; Lughi V; Bonifacio A; Sergo V; Montanaro L; Chevalier J
    Acta Biomater; 2017 Jan; 48():423-432. PubMed ID: 27867109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial fracture toughness of different resin cements bonded to a lithium disilicate glass ceramic.
    Hooshmand T; Rostami G; Behroozibakhsh M; Fatemi M; Keshvad A; van Noort R
    J Dent; 2012 Feb; 40(2):139-45. PubMed ID: 22182467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.