These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28780332)

  • 1. Controlled fabrication of multi-core alginate microcapsules.
    Eqbal MD; Gundabala V
    J Colloid Interface Sci; 2017 Dec; 507():27-34. PubMed ID: 28780332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid.
    Kim C; Chung S; Kim YE; Lee KS; Lee SH; Oh KW; Kang JY
    Lab Chip; 2011 Jan; 11(2):246-52. PubMed ID: 20967338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monodisperse alginate microcapsules with oil core generated from a microfluidic device.
    Ren PW; Ju XJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Mar; 343(1):392-5. PubMed ID: 19963224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidics-based generation of cell encapsulated microbeads in the presence of electric fields and spatio-temporal viability studies.
    Eqbal MD; Naaz F; Sharma K; Gundabala V
    Colloids Surf B Biointerfaces; 2021 Dec; 208():112065. PubMed ID: 34478958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of cell-enclosing hollow-core agarose microcapsules via jetting in water-immiscible liquid paraffin and formation of embryoid body-like spherical tissues from mouse ES cells enclosed within these microcapsules.
    Sakai S; Hashimoto I; Kawakami K
    Biotechnol Bioeng; 2008 Jan; 99(1):235-43. PubMed ID: 17705234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid one-step purification of single-cells encapsulated in alginate microcapsules from oil to aqueous phase using a hydrophobic filter paper: implications for single-cell experiments.
    Lee DH; Jang M; Park JK
    Biotechnol J; 2014 Oct; 9(10):1233-40. PubMed ID: 25130499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of core-shell microcapsules
    Jin S; Wei X; Ren J; Jiang Z; Abell C; Yu Z
    Lab Chip; 2020 Aug; 20(17):3104-3108. PubMed ID: 32766643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nozzleless Fabrication of Oil-Core Biopolymeric Microcapsules by the Interfacial Gelation of Pickering Emulsion Templates.
    Leong JY; Tey BT; Tan CP; Chan ES
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16169-76. PubMed ID: 26148344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CHO immobilization in alginate/poly-L: -lysine microcapsules: an understanding of potential and limitations.
    Breguet V; Gugerli R; von Stockar U; Marison IW
    Cytotechnology; 2007 Apr; 53(1-3):81-93. PubMed ID: 19003193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of Ultra-Thin-Shell Microcapsules Using Osmolarity-Controlled Swelling Method.
    Guo J; Hou L; Hou J; Yu J; Hu Q
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32340189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microfluidic chip for controlled release of drugs from microcapsules.
    Cheng WC; He Y; Chang AY; Que L
    Biomicrofluidics; 2013; 7(6):64102. PubMed ID: 24396536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of monodisperse calcium alginate microcapsules via internal gelation in microfluidic-generated double emulsions.
    Liu L; Wu F; Ju XJ; Xie R; Wang W; Niu CH; Chu LY
    J Colloid Interface Sci; 2013 Aug; 404():85-90. PubMed ID: 23711658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic fabrication of monodisperse microcapsules with gas cores.
    Yang SH; Song WL; Fan LL; Deng CF; Xie R; Wang W; Liu Z; Pan DW; Ju XJ; Chu LY
    Lab Chip; 2024 Jul; 24(14):3556-3567. PubMed ID: 38949110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and Characterization of a Low-Cost Microfluidic System for the Manufacture of Alginate-Lacasse Microcapsules.
    CampaƱa AL; Sotelo DC; Oliva HA; Aranguren A; Ornelas-Soto N; Cruz JC; Osma JF
    Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32438541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-Channel Responsive Surface Wettability for Reversible and Multiform Emulsion Droplet Preparation and Applications.
    Li L; Yan Z; Jin M; You X; Xie S; Liu Z; van den Berg A; Eijkel JCT; Shui L
    ACS Appl Mater Interfaces; 2019 May; 11(18):16934-16943. PubMed ID: 30983312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple One-Step and Rapid Patterning of PDMS Microfluidic Device Wettability for PDMS Shell Production.
    Feng C; Takahashi K; Zhu J
    Front Bioeng Biotechnol; 2022; 10():891213. PubMed ID: 35519623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multicore-shell PNIPAm-co-PEGMa microcapsules for cell encapsulation.
    Trongsatitkul T; Budhlall BM
    Langmuir; 2011 Nov; 27(22):13468-80. PubMed ID: 21962146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alginate encapsulation of genetically engineered mammalian cells: comparison of production devices, methods and microcapsule characteristics.
    Koch S; Schwinger C; Kressler J; Heinzen Ch; Rainov NG
    J Microencapsul; 2003; 20(3):303-16. PubMed ID: 12881112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Content Size-Dependent Alginate Microcapsule Formation Using Centrifugation to Eliminate Empty Microcapsules for On-Chip Imaging Cell Sorter Application.
    Akimoto T; Yasuda K
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.